mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-15 11:29:32 +01:00
12
This commit is contained in:
@@ -5,7 +5,6 @@ import matplotlib.pyplot as plt
|
|||||||
|
|
||||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||||
|
|
||||||
|
|
||||||
def read_parquets(spark: SparkSession):
|
def read_parquets(spark: SparkSession):
|
||||||
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||||
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||||
|
|||||||
@@ -1,55 +1,57 @@
|
|||||||
from sparkstart import scon, spark
|
from sparkstart import scon, spark
|
||||||
from pyspark.sql import SparkSession
|
from pyspark.sql import SparkSession
|
||||||
import time
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
|
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||||
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
|
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
|
||||||
|
|
||||||
def init_view_stations(spark):
|
def read_parquets(spark: SparkSession):
|
||||||
"""Lädt die Stationsdaten für Aufgabe 11"""
|
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||||
s_path = HDFSPATH_STATIONS + "german_stations.parquet"
|
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||||
d_path = HDFSPATH_STATIONS + "german_stations_data.parquet"
|
|
||||||
|
|
||||||
spark.read.parquet(s_path).createOrReplaceTempView("german_stations")
|
|
||||||
spark.read.parquet(d_path).createOrReplaceTempView("german_stations_data")
|
|
||||||
|
|
||||||
def init_view_stocks(spark):
|
stations_df = spark.read.parquet(stations_path)
|
||||||
"""Lädt die Stocks-Daten für Aufgabe 12"""
|
stations_df.createOrReplaceTempView("german_stations")
|
||||||
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
|
|
||||||
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
|
|
||||||
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
|
|
||||||
|
|
||||||
# ---------------------------------------------------------
|
products_df = spark.read.parquet(products_path)
|
||||||
# AUFGABE 11
|
products_df.createOrReplaceTempView("german_stations_data")
|
||||||
# ---------------------------------------------------------
|
|
||||||
|
stations_df.cache()
|
||||||
|
products_df.cache()
|
||||||
|
|
||||||
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
|
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
|
||||||
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
|
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
|
||||||
start = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
# 1. Station ID finden
|
# 1. Station ID finden
|
||||||
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE station_name LIKE '%{station_name}%'")
|
# Case-insensitive search
|
||||||
|
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE lower(station_name) LIKE '%{station_name.lower()}%'")
|
||||||
try:
|
try:
|
||||||
sid = sid_df.collect()[0]['stationId']
|
sid = sid_df.collect()[0]['stationId']
|
||||||
|
print(f"Station found: {station_name} -> ID {sid}")
|
||||||
except IndexError:
|
except IndexError:
|
||||||
print(f"Station {station_name} nicht gefunden.")
|
print(f"Station {station_name} nicht gefunden.")
|
||||||
return
|
return
|
||||||
|
|
||||||
# 2. Rollup Query vorbereiten
|
# 2. Rollup Query vorbereiten
|
||||||
|
# FIX: Parse string date 'YYYYMMDD' to real DATE object first
|
||||||
q_prep = f"""
|
q_prep = f"""
|
||||||
SELECT
|
SELECT
|
||||||
YEAR(date) as yr,
|
YEAR(TO_DATE(date, 'yyyyMMdd')) as yr,
|
||||||
QUARTER(date) as qt,
|
QUARTER(TO_DATE(date, 'yyyyMMdd')) as qt,
|
||||||
MONTH(date) as mo,
|
MONTH(TO_DATE(date, 'yyyyMMdd')) as mo,
|
||||||
DAY(date) as da,
|
DAY(TO_DATE(date, 'yyyyMMdd')) as da,
|
||||||
TT_TU
|
TT_TU
|
||||||
FROM german_stations_data
|
FROM german_stations_data
|
||||||
WHERE stationId = {sid} AND TT_TU IS NOT NULL AND TT_TU > -50
|
WHERE stationId = {sid}
|
||||||
|
AND TT_TU IS NOT NULL
|
||||||
|
AND TT_TU > -50
|
||||||
|
AND TT_TU < 60
|
||||||
"""
|
"""
|
||||||
spark.sql(q_prep).createOrReplaceTempView("data_prep")
|
spark.sql(q_prep).createOrReplaceTempView("data_prep")
|
||||||
|
|
||||||
|
# 3. Rollup Execution
|
||||||
|
# Note: We use string construction for quarters/months to ensure we get a valid date string for plotting
|
||||||
q_rollup = """
|
q_rollup = """
|
||||||
SELECT
|
SELECT
|
||||||
yr, qt, mo, da,
|
yr, qt, mo, da,
|
||||||
@@ -57,10 +59,14 @@ def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
|
|||||||
MAX(TT_TU) as max_temp,
|
MAX(TT_TU) as max_temp,
|
||||||
AVG(TT_TU) as avg_temp,
|
AVG(TT_TU) as avg_temp,
|
||||||
|
|
||||||
-- Datums-Konstruktion für Plots
|
-- Construct dates for plotting (handling the NULLs from ROLLUP)
|
||||||
DATE(STRING(yr) || '-' || STRING(qt*3-2) || '-01') as qt_date,
|
-- For Quarter: Use 1st month of quarter
|
||||||
|
DATE(concat_ws('-', yr, cast(qt*3-2 as int), '01')) as qt_date,
|
||||||
|
-- For Month: Use 1st day of month
|
||||||
MAKE_DATE(yr, mo, 1) as mo_date,
|
MAKE_DATE(yr, mo, 1) as mo_date,
|
||||||
|
-- For Year: Use Jan 1st
|
||||||
MAKE_DATE(yr, 1, 1) as yr_date,
|
MAKE_DATE(yr, 1, 1) as yr_date,
|
||||||
|
-- For Day: Use actual date
|
||||||
MAKE_DATE(yr, mo, da) as da_date
|
MAKE_DATE(yr, mo, da) as da_date
|
||||||
|
|
||||||
FROM data_prep
|
FROM data_prep
|
||||||
@@ -71,84 +77,97 @@ def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
|
|||||||
df_rollup.cache()
|
df_rollup.cache()
|
||||||
df_rollup.createOrReplaceTempView("station_rollup")
|
df_rollup.createOrReplaceTempView("station_rollup")
|
||||||
|
|
||||||
# Trigger Action for Cache & Time Measurement
|
# Trigger Action
|
||||||
count = df_rollup.count()
|
count = df_rollup.count()
|
||||||
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start:.2f}s")
|
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start_time:.2f}s")
|
||||||
input(">> 11a: Check Spark UI (Stages/Storage) jetzt. Enter für Plots...")
|
|
||||||
|
|
||||||
# Plot 1: Tageswerte (letzte 3 Jahre der Daten)
|
# --- PLOTTING ---
|
||||||
|
|
||||||
|
# Plot 1: Tageswerte (letzte 3 Jahre)
|
||||||
|
# Filter: All levels must be present (not null)
|
||||||
q_days = """
|
q_days = """
|
||||||
SELECT da_date as date, avg_temp
|
SELECT da_date as date, avg_temp
|
||||||
FROM station_rollup
|
FROM station_rollup
|
||||||
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
|
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
|
||||||
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup)
|
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup WHERE yr IS NOT NULL)
|
||||||
ORDER BY date
|
ORDER BY date
|
||||||
"""
|
"""
|
||||||
pdf_days = spark.sql(q_days).toPandas()
|
pdf_days = spark.sql(q_days).toPandas()
|
||||||
|
|
||||||
plt.figure(1, figsize=(10, 5))
|
if pdf_days.empty:
|
||||||
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
|
print("Warnung: Keine Daten für Tages-Plot gefunden.")
|
||||||
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
|
else:
|
||||||
plt.xlabel('Date')
|
plt.figure(1, figsize=(10, 5))
|
||||||
plt.ylabel('Temp °C')
|
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
|
||||||
plt.tight_layout()
|
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
|
||||||
plt.show()
|
plt.xlabel('Date')
|
||||||
|
plt.ylabel('Temp °C')
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
# Plot 2: Monatswerte (10-20 Jahre)
|
# Plot 2: Monatswerte (10-20 Jahre)
|
||||||
|
# Filter: Day is NULL (aggregation level), but Month is NOT NULL
|
||||||
q_months = """
|
q_months = """
|
||||||
SELECT mo_date as date, avg_temp
|
SELECT mo_date as date, avg_temp
|
||||||
FROM station_rollup
|
FROM station_rollup
|
||||||
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
|
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
|
||||||
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup WHERE yr IS NOT NULL)
|
||||||
ORDER BY date
|
ORDER BY date
|
||||||
"""
|
"""
|
||||||
pdf_months = spark.sql(q_months).toPandas()
|
pdf_months = spark.sql(q_months).toPandas()
|
||||||
|
|
||||||
plt.figure(2, figsize=(10, 5))
|
if not pdf_months.empty:
|
||||||
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
|
plt.figure(2, figsize=(10, 5))
|
||||||
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
|
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
|
||||||
plt.xlabel('Date')
|
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
|
||||||
plt.ylabel('Temp °C')
|
plt.xlabel('Date')
|
||||||
plt.tight_layout()
|
plt.ylabel('Temp °C')
|
||||||
plt.show()
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
# Plot 3: Quartalswerte
|
# Plot 3: Quartalswerte
|
||||||
|
# Filter: Month is NULL, Quarter is NOT NULL
|
||||||
q_quarters = """
|
q_quarters = """
|
||||||
SELECT qt_date as date, avg_temp
|
SELECT qt_date as date, avg_temp
|
||||||
FROM station_rollup
|
FROM station_rollup
|
||||||
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
|
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
|
||||||
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup WHERE yr IS NOT NULL)
|
||||||
ORDER BY date
|
ORDER BY date
|
||||||
"""
|
"""
|
||||||
pdf_quarters = spark.sql(q_quarters).toPandas()
|
pdf_quarters = spark.sql(q_quarters).toPandas()
|
||||||
|
|
||||||
plt.figure(3, figsize=(10, 5))
|
if not pdf_quarters.empty:
|
||||||
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
|
plt.figure(3, figsize=(10, 5))
|
||||||
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
|
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
|
||||||
plt.show()
|
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
# Plot 4: Jahreswerte
|
# Plot 4: Jahreswerte
|
||||||
|
# Filter: Quarter is NULL, Year is NOT NULL
|
||||||
q_years = """
|
q_years = """
|
||||||
SELECT yr_date as date, min_temp, max_temp, avg_temp
|
SELECT yr_date as date, min_temp, max_temp, avg_temp
|
||||||
FROM station_rollup
|
FROM station_rollup
|
||||||
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
|
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
|
||||||
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup WHERE yr IS NOT NULL)
|
||||||
ORDER BY date
|
ORDER BY date
|
||||||
"""
|
"""
|
||||||
pdf_years = spark.sql(q_years).toPandas()
|
pdf_years = spark.sql(q_years).toPandas()
|
||||||
|
|
||||||
plt.figure(4, figsize=(10, 5))
|
if not pdf_years.empty:
|
||||||
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
|
plt.figure(4, figsize=(10, 5))
|
||||||
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
|
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
|
||||||
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
|
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
|
||||||
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
|
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
|
||||||
plt.legend()
|
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
|
||||||
plt.show()
|
plt.legend()
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def task_11b_rank(spark: SparkSession):
|
def task_11b_rank(spark: SparkSession):
|
||||||
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
|
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
|
||||||
start = time.time()
|
|
||||||
|
|
||||||
q_tempmonat = """
|
q_tempmonat = """
|
||||||
SELECT
|
SELECT
|
||||||
@@ -194,13 +213,12 @@ def task_11b_rank(spark: SparkSession):
|
|||||||
"""
|
"""
|
||||||
spark.sql(q_rank_global).show(10)
|
spark.sql(q_rank_global).show(10)
|
||||||
|
|
||||||
print(f"Dauer 11b: {time.time() - start:.2f}s")
|
print("11b: Fertig.")
|
||||||
input(">> 11b: Check Spark UI (Jobs/Stages). Enter...")
|
|
||||||
|
|
||||||
|
|
||||||
def task_11c_groupingsets(spark: SparkSession):
|
def task_11c_groupingsets(spark: SparkSession):
|
||||||
print("\n--- Aufgabe 11c: Grouping Sets ---")
|
print("\n--- Aufgabe 11c: Grouping Sets ---")
|
||||||
start = time.time()
|
|
||||||
|
|
||||||
q_prep = """
|
q_prep = """
|
||||||
SELECT
|
SELECT
|
||||||
@@ -234,8 +252,8 @@ def task_11c_groupingsets(spark: SparkSession):
|
|||||||
df_gs.createOrReplaceTempView("grouping_result")
|
df_gs.createOrReplaceTempView("grouping_result")
|
||||||
|
|
||||||
# Action zum Cachen
|
# Action zum Cachen
|
||||||
df_gs.count()
|
df_gs.count()
|
||||||
print(f"Grouping Sets berechnet. Dauer: {time.time() - start:.2f}s")
|
print("Grouping Sets berechnet.")
|
||||||
|
|
||||||
print("Auswahl 1: Jahr & Bundesland")
|
print("Auswahl 1: Jahr & Bundesland")
|
||||||
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
|
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
|
||||||
@@ -245,122 +263,14 @@ def task_11c_groupingsets(spark: SparkSession):
|
|||||||
|
|
||||||
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
|
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
|
||||||
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
|
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
|
||||||
|
|
||||||
input(">> 11c: Check Spark UI (Zugriffspläne/Storage). Enter...")
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------------------------------------------------
|
|
||||||
# AUFGABE 12
|
|
||||||
# ---------------------------------------------------------
|
|
||||||
|
|
||||||
def task_12_stocks_analysis(spark: SparkSession):
|
|
||||||
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
|
|
||||||
|
|
||||||
# a) Erstes und letztes Datum je Symbol
|
|
||||||
print("a) Min/Max Datum pro Symbol")
|
|
||||||
t0 = time.time()
|
|
||||||
q_a = """
|
|
||||||
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
|
|
||||||
FROM stocks
|
|
||||||
GROUP BY symbol
|
|
||||||
ORDER BY symbol
|
|
||||||
"""
|
|
||||||
spark.sql(q_a).show(5)
|
|
||||||
print(f"Zeit a): {time.time()-t0:.2f}s")
|
|
||||||
|
|
||||||
# b) Aggregationen 2009
|
|
||||||
print("\nb) High/Low/Avg Close 2009")
|
|
||||||
t0 = time.time()
|
|
||||||
q_b = """
|
|
||||||
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close
|
|
||||||
FROM stocks
|
|
||||||
WHERE YEAR(date) = 2009
|
|
||||||
GROUP BY symbol
|
|
||||||
ORDER BY symbol
|
|
||||||
"""
|
|
||||||
spark.sql(q_b).show(5)
|
|
||||||
print(f"Zeit b): {time.time()-t0:.2f}s")
|
|
||||||
|
|
||||||
# c) Lateral View (Explode Portfolio)
|
|
||||||
print("\nc) Lateral View: Aktien in Portfolios")
|
|
||||||
t0 = time.time()
|
|
||||||
|
|
||||||
q_c = """
|
|
||||||
SELECT
|
|
||||||
h.symbol,
|
|
||||||
SUM(h.amount) as total_shares,
|
|
||||||
COUNT(p.portfolioId) as num_portfolios,
|
|
||||||
AVG(h.amount) as avg_per_portfolio
|
|
||||||
FROM portfolio p
|
|
||||||
LATERAL VIEW explode(holdings) t AS h
|
|
||||||
GROUP BY h.symbol
|
|
||||||
ORDER BY h.symbol
|
|
||||||
"""
|
|
||||||
spark.sql(q_c).show(5)
|
|
||||||
print(f"Zeit c): {time.time()-t0:.2f}s")
|
|
||||||
|
|
||||||
# d) Symbole in keinem Portfolio (Anti Join)
|
|
||||||
print("\nd) Symbole ohne Portfolio")
|
|
||||||
t0 = time.time()
|
|
||||||
q_d = """
|
|
||||||
SELECT DISTINCT s.symbol
|
|
||||||
FROM stocks s
|
|
||||||
LEFT ANTI JOIN (
|
|
||||||
SELECT DISTINCT h.symbol
|
|
||||||
FROM portfolio p
|
|
||||||
LATERAL VIEW explode(holdings) t AS h
|
|
||||||
) p_sym ON s.symbol = p_sym.symbol
|
|
||||||
ORDER BY s.symbol
|
|
||||||
"""
|
|
||||||
spark.sql(q_d).show(5)
|
|
||||||
print(f"Zeit d): {time.time()-t0:.2f}s")
|
|
||||||
|
|
||||||
input(">> 12 a-d fertig. Check UI. Enter für e)...")
|
|
||||||
|
|
||||||
# e) Portfolio Wert Ende 2010
|
|
||||||
print("\ne) Portfolio Bewertung Ende 2010")
|
|
||||||
t0 = time.time()
|
|
||||||
|
|
||||||
q_last_price = """
|
|
||||||
SELECT symbol, close
|
|
||||||
FROM (
|
|
||||||
SELECT
|
|
||||||
symbol,
|
|
||||||
close,
|
|
||||||
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
|
|
||||||
FROM stocks
|
|
||||||
WHERE YEAR(date) = 2010
|
|
||||||
) tmp
|
|
||||||
WHERE rn = 1
|
|
||||||
"""
|
|
||||||
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
|
|
||||||
|
|
||||||
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren
|
|
||||||
q_val = """
|
|
||||||
SELECT
|
|
||||||
p.portfolioId,
|
|
||||||
SUM(h.amount * s.close) as portfolio_value_2010
|
|
||||||
FROM portfolio p
|
|
||||||
LATERAL VIEW explode(holdings) t AS h
|
|
||||||
JOIN stocks_2010_end s ON h.symbol = s.symbol
|
|
||||||
GROUP BY p.portfolioId
|
|
||||||
ORDER BY p.portfolioId
|
|
||||||
"""
|
|
||||||
spark.sql(q_val).show(5)
|
|
||||||
print(f"Zeit e): {time.time()-t0:.2f}s")
|
|
||||||
|
|
||||||
|
|
||||||
def main(scon, spark):
|
def main(scon, spark):
|
||||||
init_view_stations(spark)
|
read_parquets(spark)
|
||||||
|
|
||||||
# Aufgabe 11
|
# Aufgabe 11
|
||||||
task_11a_rollup(spark, station_name="Kempten")
|
task_11a_rollup(spark, station_name="Kempten")
|
||||||
task_11b_rank(spark)
|
task_11b_rank(spark)
|
||||||
task_11c_groupingsets(spark)
|
task_11c_groupingsets(spark)
|
||||||
|
|
||||||
# Aufgabe 12
|
|
||||||
init_view_stocks(spark)
|
|
||||||
task_12_stocks_analysis(spark)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main(scon, spark)
|
main(scon, spark)
|
||||||
123
Aufgabe 12/Aufgabe12.py
Normal file
123
Aufgabe 12/Aufgabe12.py
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
from sparkstart import scon, spark
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
import time
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
|
||||||
|
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
|
||||||
|
|
||||||
|
def init_view_stocks(spark):
|
||||||
|
"""Lädt die Stocks-Daten für Aufgabe 12"""
|
||||||
|
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
|
||||||
|
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
|
||||||
|
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
|
||||||
|
|
||||||
|
# ---------------------------------------------------------
|
||||||
|
# AUFGABE 12
|
||||||
|
# ---------------------------------------------------------
|
||||||
|
|
||||||
|
def task_12_stocks_analysis(spark: SparkSession):
|
||||||
|
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
|
||||||
|
|
||||||
|
# a) Erstes und letztes Datum je Symbol
|
||||||
|
print("a) Min/Max Datum pro Symbol")
|
||||||
|
t0 = time.time()
|
||||||
|
q_a = """
|
||||||
|
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
|
||||||
|
FROM stocks
|
||||||
|
GROUP BY symbol
|
||||||
|
ORDER BY symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_a).show(5)
|
||||||
|
print(f"Zeit a): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
# b) Aggregationen 2009
|
||||||
|
print("\nb) High/Low/Avg Close 2009")
|
||||||
|
t0 = time.time()
|
||||||
|
q_b = """
|
||||||
|
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close
|
||||||
|
FROM stocks
|
||||||
|
WHERE YEAR(date) = 2009
|
||||||
|
GROUP BY symbol
|
||||||
|
ORDER BY symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_b).show(5)
|
||||||
|
print(f"Zeit b): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
# c) Lateral View (Explode Portfolio)
|
||||||
|
print("\nc) Lateral View: Aktien in Portfolios")
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
|
q_c = """
|
||||||
|
SELECT
|
||||||
|
h.symbol,
|
||||||
|
SUM(h.amount) as total_shares,
|
||||||
|
COUNT(p.portfolioId) as num_portfolios,
|
||||||
|
AVG(h.amount) as avg_per_portfolio
|
||||||
|
FROM portfolio p
|
||||||
|
LATERAL VIEW explode(holdings) t AS h
|
||||||
|
GROUP BY h.symbol
|
||||||
|
ORDER BY h.symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_c).show(5)
|
||||||
|
print(f"Zeit c): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
# d) Symbole in keinem Portfolio (Anti Join)
|
||||||
|
print("\nd) Symbole ohne Portfolio")
|
||||||
|
t0 = time.time()
|
||||||
|
q_d = """
|
||||||
|
SELECT DISTINCT s.symbol
|
||||||
|
FROM stocks s
|
||||||
|
LEFT ANTI JOIN (
|
||||||
|
SELECT DISTINCT h.symbol
|
||||||
|
FROM portfolio p
|
||||||
|
LATERAL VIEW explode(holdings) t AS h
|
||||||
|
) p_sym ON s.symbol = p_sym.symbol
|
||||||
|
ORDER BY s.symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_d).show(5)
|
||||||
|
print(f"Zeit d): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
input(">> 12 a-d fertig. Check UI. Enter für e)...")
|
||||||
|
|
||||||
|
# e) Portfolio Wert Ende 2010
|
||||||
|
print("\ne) Portfolio Bewertung Ende 2010")
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
|
q_last_price = """
|
||||||
|
SELECT symbol, close
|
||||||
|
FROM (
|
||||||
|
SELECT
|
||||||
|
symbol,
|
||||||
|
close,
|
||||||
|
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
|
||||||
|
FROM stocks
|
||||||
|
WHERE YEAR(date) = 2010
|
||||||
|
) tmp
|
||||||
|
WHERE rn = 1
|
||||||
|
"""
|
||||||
|
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
|
||||||
|
|
||||||
|
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren
|
||||||
|
q_val = """
|
||||||
|
SELECT
|
||||||
|
p.portfolioId,
|
||||||
|
SUM(h.amount * s.close) as portfolio_value_2010
|
||||||
|
FROM portfolio p
|
||||||
|
LATERAL VIEW explode(holdings) t AS h
|
||||||
|
JOIN stocks_2010_end s ON h.symbol = s.symbol
|
||||||
|
GROUP BY p.portfolioId
|
||||||
|
ORDER BY p.portfolioId
|
||||||
|
"""
|
||||||
|
spark.sql(q_val).show(5)
|
||||||
|
print(f"Zeit e): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
|
||||||
|
def main(scon, spark):
|
||||||
|
# Aufgabe 12
|
||||||
|
init_view_stocks(spark)
|
||||||
|
task_12_stocks_analysis(spark)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main(scon, spark)
|
||||||
22
Aufgabe 12/sparkstart.py
Normal file
22
Aufgabe 12/sparkstart.py
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
"""
|
||||||
|
Erzeugen einer Spark-Konfiguration
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pyspark import SparkConf, SparkContext
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
# connect to cluster
|
||||||
|
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||||
|
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||||
|
conf.set("spark.executor.memory", '32g')
|
||||||
|
conf.set("spark.driver.memory", '8g')
|
||||||
|
conf.set("spark.cores.max", "40")
|
||||||
|
scon = SparkContext(conf=conf)
|
||||||
|
|
||||||
|
|
||||||
|
spark = SparkSession \
|
||||||
|
.builder \
|
||||||
|
.appName("Python Spark SQL") \
|
||||||
|
.getOrCreate()
|
||||||
Reference in New Issue
Block a user