mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-15 11:29:32 +01:00
Aufgabe11
This commit is contained in:
366
Aufgabe 11/Aufgabe11.py
Normal file
366
Aufgabe 11/Aufgabe11.py
Normal file
@@ -0,0 +1,366 @@
|
|||||||
|
from sparkstart import scon, spark
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
import time
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
|
||||||
|
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
|
||||||
|
|
||||||
|
def init_view_stations(spark):
|
||||||
|
"""Lädt die Stationsdaten für Aufgabe 11"""
|
||||||
|
s_path = HDFSPATH_STATIONS + "german_stations.parquet"
|
||||||
|
d_path = HDFSPATH_STATIONS + "german_stations_data.parquet"
|
||||||
|
|
||||||
|
spark.read.parquet(s_path).createOrReplaceTempView("german_stations")
|
||||||
|
spark.read.parquet(d_path).createOrReplaceTempView("german_stations_data")
|
||||||
|
|
||||||
|
def init_view_stocks(spark):
|
||||||
|
"""Lädt die Stocks-Daten für Aufgabe 12"""
|
||||||
|
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
|
||||||
|
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
|
||||||
|
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
|
||||||
|
|
||||||
|
# ---------------------------------------------------------
|
||||||
|
# AUFGABE 11
|
||||||
|
# ---------------------------------------------------------
|
||||||
|
|
||||||
|
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
|
||||||
|
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
|
||||||
|
start = time.time()
|
||||||
|
|
||||||
|
# 1. Station ID finden
|
||||||
|
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE station_name LIKE '%{station_name}%'")
|
||||||
|
try:
|
||||||
|
sid = sid_df.collect()[0]['stationId']
|
||||||
|
except IndexError:
|
||||||
|
print(f"Station {station_name} nicht gefunden.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 2. Rollup Query vorbereiten
|
||||||
|
q_prep = f"""
|
||||||
|
SELECT
|
||||||
|
YEAR(date) as yr,
|
||||||
|
QUARTER(date) as qt,
|
||||||
|
MONTH(date) as mo,
|
||||||
|
DAY(date) as da,
|
||||||
|
TT_TU
|
||||||
|
FROM german_stations_data
|
||||||
|
WHERE stationId = {sid} AND TT_TU IS NOT NULL AND TT_TU > -50
|
||||||
|
"""
|
||||||
|
spark.sql(q_prep).createOrReplaceTempView("data_prep")
|
||||||
|
|
||||||
|
q_rollup = """
|
||||||
|
SELECT
|
||||||
|
yr, qt, mo, da,
|
||||||
|
MIN(TT_TU) as min_temp,
|
||||||
|
MAX(TT_TU) as max_temp,
|
||||||
|
AVG(TT_TU) as avg_temp,
|
||||||
|
|
||||||
|
-- Datums-Konstruktion für Plots
|
||||||
|
DATE(STRING(yr) || '-' || STRING(qt*3-2) || '-01') as qt_date,
|
||||||
|
MAKE_DATE(yr, mo, 1) as mo_date,
|
||||||
|
MAKE_DATE(yr, 1, 1) as yr_date,
|
||||||
|
MAKE_DATE(yr, mo, da) as da_date
|
||||||
|
|
||||||
|
FROM data_prep
|
||||||
|
GROUP BY ROLLUP(yr, qt, mo, da)
|
||||||
|
"""
|
||||||
|
|
||||||
|
df_rollup = spark.sql(q_rollup)
|
||||||
|
df_rollup.cache()
|
||||||
|
df_rollup.createOrReplaceTempView("station_rollup")
|
||||||
|
|
||||||
|
# Trigger Action for Cache & Time Measurement
|
||||||
|
count = df_rollup.count()
|
||||||
|
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start:.2f}s")
|
||||||
|
input(">> 11a: Check Spark UI (Stages/Storage) jetzt. Enter für Plots...")
|
||||||
|
|
||||||
|
# Plot 1: Tageswerte (letzte 3 Jahre der Daten)
|
||||||
|
q_days = """
|
||||||
|
SELECT da_date as date, avg_temp
|
||||||
|
FROM station_rollup
|
||||||
|
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
|
||||||
|
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup)
|
||||||
|
ORDER BY date
|
||||||
|
"""
|
||||||
|
pdf_days = spark.sql(q_days).toPandas()
|
||||||
|
|
||||||
|
plt.figure(1, figsize=(10, 5))
|
||||||
|
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
|
||||||
|
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
|
||||||
|
plt.xlabel('Date')
|
||||||
|
plt.ylabel('Temp °C')
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Plot 2: Monatswerte (10-20 Jahre)
|
||||||
|
q_months = """
|
||||||
|
SELECT mo_date as date, avg_temp
|
||||||
|
FROM station_rollup
|
||||||
|
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
|
||||||
|
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
||||||
|
ORDER BY date
|
||||||
|
"""
|
||||||
|
pdf_months = spark.sql(q_months).toPandas()
|
||||||
|
|
||||||
|
plt.figure(2, figsize=(10, 5))
|
||||||
|
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
|
||||||
|
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
|
||||||
|
plt.xlabel('Date')
|
||||||
|
plt.ylabel('Temp °C')
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Plot 3: Quartalswerte
|
||||||
|
q_quarters = """
|
||||||
|
SELECT qt_date as date, avg_temp
|
||||||
|
FROM station_rollup
|
||||||
|
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
|
||||||
|
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
||||||
|
ORDER BY date
|
||||||
|
"""
|
||||||
|
pdf_quarters = spark.sql(q_quarters).toPandas()
|
||||||
|
|
||||||
|
plt.figure(3, figsize=(10, 5))
|
||||||
|
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
|
||||||
|
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Plot 4: Jahreswerte
|
||||||
|
q_years = """
|
||||||
|
SELECT yr_date as date, min_temp, max_temp, avg_temp
|
||||||
|
FROM station_rollup
|
||||||
|
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
|
||||||
|
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
||||||
|
ORDER BY date
|
||||||
|
"""
|
||||||
|
pdf_years = spark.sql(q_years).toPandas()
|
||||||
|
|
||||||
|
plt.figure(4, figsize=(10, 5))
|
||||||
|
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
|
||||||
|
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
|
||||||
|
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
|
||||||
|
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
|
||||||
|
plt.legend()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def task_11b_rank(spark: SparkSession):
|
||||||
|
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
|
||||||
|
start = time.time()
|
||||||
|
|
||||||
|
q_tempmonat = """
|
||||||
|
SELECT
|
||||||
|
d.stationId,
|
||||||
|
s.station_name,
|
||||||
|
SUBSTR(CAST(d.date AS STRING), 1, 4) as year,
|
||||||
|
SUBSTR(CAST(d.date AS STRING), 6, 2) as month,
|
||||||
|
MIN(d.TT_TU) as min_t,
|
||||||
|
MAX(d.TT_TU) as max_t,
|
||||||
|
AVG(d.TT_TU) as avg_t
|
||||||
|
FROM german_stations_data d
|
||||||
|
JOIN german_stations s ON d.stationId = s.stationId
|
||||||
|
WHERE d.TT_TU IS NOT NULL AND d.TT_TU > -50
|
||||||
|
GROUP BY d.stationId, s.station_name, year, month
|
||||||
|
"""
|
||||||
|
df_tm = spark.sql(q_tempmonat)
|
||||||
|
df_tm.createOrReplaceTempView("tempmonat")
|
||||||
|
|
||||||
|
# 1. Ranking Partitioniert nach Monat im Jahr 2015
|
||||||
|
print(" > Berechne Ranking für 2015 (partitioniert nach Monat)...")
|
||||||
|
q_rank_2015 = """
|
||||||
|
SELECT
|
||||||
|
month, station_name, min_t,
|
||||||
|
RANK() OVER (PARTITION BY month ORDER BY min_t ASC) as rank_min,
|
||||||
|
RANK() OVER (PARTITION BY month ORDER BY max_t ASC) as rank_max,
|
||||||
|
RANK() OVER (PARTITION BY month ORDER BY avg_t ASC) as rank_avg
|
||||||
|
FROM tempmonat
|
||||||
|
WHERE year = '2015'
|
||||||
|
ORDER BY rank_min, month
|
||||||
|
"""
|
||||||
|
spark.sql(q_rank_2015).show(10)
|
||||||
|
|
||||||
|
# 2. Globales Ranking (über alle Monate/Jahre hinweg)
|
||||||
|
print(" > Berechne Ranking global (kälteste Monate aller Zeiten)...")
|
||||||
|
q_rank_global = """
|
||||||
|
SELECT
|
||||||
|
year, month, station_name, min_t,
|
||||||
|
RANK() OVER (ORDER BY min_t ASC) as rank_min,
|
||||||
|
RANK() OVER (ORDER BY max_t ASC) as rank_max,
|
||||||
|
RANK() OVER (ORDER BY avg_t ASC) as rank_avg
|
||||||
|
FROM tempmonat
|
||||||
|
ORDER BY rank_min
|
||||||
|
"""
|
||||||
|
spark.sql(q_rank_global).show(10)
|
||||||
|
|
||||||
|
print(f"Dauer 11b: {time.time() - start:.2f}s")
|
||||||
|
input(">> 11b: Check Spark UI (Jobs/Stages). Enter...")
|
||||||
|
|
||||||
|
|
||||||
|
def task_11c_groupingsets(spark: SparkSession):
|
||||||
|
print("\n--- Aufgabe 11c: Grouping Sets ---")
|
||||||
|
start = time.time()
|
||||||
|
|
||||||
|
q_prep = """
|
||||||
|
SELECT
|
||||||
|
CAST(SUBSTR(CAST(d.date AS STRING), 1, 4) AS INT) as year,
|
||||||
|
CAST(SUBSTR(CAST(d.date AS STRING), 6, 2) AS INT) as month,
|
||||||
|
s.station_name,
|
||||||
|
s.bundesland,
|
||||||
|
d.TT_TU
|
||||||
|
FROM german_stations_data d
|
||||||
|
JOIN german_stations s ON d.stationId = s.stationId
|
||||||
|
WHERE d.TT_TU > -50
|
||||||
|
"""
|
||||||
|
spark.sql(q_prep).createOrReplaceTempView("gs_base")
|
||||||
|
|
||||||
|
q_sets = """
|
||||||
|
SELECT
|
||||||
|
year,
|
||||||
|
month,
|
||||||
|
bundesland,
|
||||||
|
station_name,
|
||||||
|
MIN(TT_TU) as min_t, MAX(TT_TU) as max_t, AVG(TT_TU) as avg_t
|
||||||
|
FROM gs_base
|
||||||
|
GROUP BY GROUPING SETS (
|
||||||
|
(year, bundesland),
|
||||||
|
(year, station_name),
|
||||||
|
(month, bundesland)
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
df_gs = spark.sql(q_sets)
|
||||||
|
df_gs.cache()
|
||||||
|
df_gs.createOrReplaceTempView("grouping_result")
|
||||||
|
|
||||||
|
# Action zum Cachen
|
||||||
|
df_gs.count()
|
||||||
|
print(f"Grouping Sets berechnet. Dauer: {time.time() - start:.2f}s")
|
||||||
|
|
||||||
|
print("Auswahl 1: Jahr & Bundesland")
|
||||||
|
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
|
||||||
|
|
||||||
|
print("Auswahl 2: Jahr & Station")
|
||||||
|
spark.sql("SELECT year, station_name, avg_t FROM grouping_result WHERE bundesland IS NULL AND month IS NULL ORDER BY year DESC, station_name").show(5)
|
||||||
|
|
||||||
|
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
|
||||||
|
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
|
||||||
|
|
||||||
|
input(">> 11c: Check Spark UI (Zugriffspläne/Storage). Enter...")
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------------------
|
||||||
|
# AUFGABE 12
|
||||||
|
# ---------------------------------------------------------
|
||||||
|
|
||||||
|
def task_12_stocks_analysis(spark: SparkSession):
|
||||||
|
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
|
||||||
|
|
||||||
|
# a) Erstes und letztes Datum je Symbol
|
||||||
|
print("a) Min/Max Datum pro Symbol")
|
||||||
|
t0 = time.time()
|
||||||
|
q_a = """
|
||||||
|
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
|
||||||
|
FROM stocks
|
||||||
|
GROUP BY symbol
|
||||||
|
ORDER BY symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_a).show(5)
|
||||||
|
print(f"Zeit a): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
# b) Aggregationen 2009
|
||||||
|
print("\nb) High/Low/Avg Close 2009")
|
||||||
|
t0 = time.time()
|
||||||
|
q_b = """
|
||||||
|
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close
|
||||||
|
FROM stocks
|
||||||
|
WHERE YEAR(date) = 2009
|
||||||
|
GROUP BY symbol
|
||||||
|
ORDER BY symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_b).show(5)
|
||||||
|
print(f"Zeit b): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
# c) Lateral View (Explode Portfolio)
|
||||||
|
print("\nc) Lateral View: Aktien in Portfolios")
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
|
q_c = """
|
||||||
|
SELECT
|
||||||
|
h.symbol,
|
||||||
|
SUM(h.amount) as total_shares,
|
||||||
|
COUNT(p.portfolioId) as num_portfolios,
|
||||||
|
AVG(h.amount) as avg_per_portfolio
|
||||||
|
FROM portfolio p
|
||||||
|
LATERAL VIEW explode(holdings) t AS h
|
||||||
|
GROUP BY h.symbol
|
||||||
|
ORDER BY h.symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_c).show(5)
|
||||||
|
print(f"Zeit c): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
# d) Symbole in keinem Portfolio (Anti Join)
|
||||||
|
print("\nd) Symbole ohne Portfolio")
|
||||||
|
t0 = time.time()
|
||||||
|
q_d = """
|
||||||
|
SELECT DISTINCT s.symbol
|
||||||
|
FROM stocks s
|
||||||
|
LEFT ANTI JOIN (
|
||||||
|
SELECT DISTINCT h.symbol
|
||||||
|
FROM portfolio p
|
||||||
|
LATERAL VIEW explode(holdings) t AS h
|
||||||
|
) p_sym ON s.symbol = p_sym.symbol
|
||||||
|
ORDER BY s.symbol
|
||||||
|
"""
|
||||||
|
spark.sql(q_d).show(5)
|
||||||
|
print(f"Zeit d): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
input(">> 12 a-d fertig. Check UI. Enter für e)...")
|
||||||
|
|
||||||
|
# e) Portfolio Wert Ende 2010
|
||||||
|
print("\ne) Portfolio Bewertung Ende 2010")
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
|
q_last_price = """
|
||||||
|
SELECT symbol, close
|
||||||
|
FROM (
|
||||||
|
SELECT
|
||||||
|
symbol,
|
||||||
|
close,
|
||||||
|
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
|
||||||
|
FROM stocks
|
||||||
|
WHERE YEAR(date) = 2010
|
||||||
|
) tmp
|
||||||
|
WHERE rn = 1
|
||||||
|
"""
|
||||||
|
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
|
||||||
|
|
||||||
|
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren
|
||||||
|
q_val = """
|
||||||
|
SELECT
|
||||||
|
p.portfolioId,
|
||||||
|
SUM(h.amount * s.close) as portfolio_value_2010
|
||||||
|
FROM portfolio p
|
||||||
|
LATERAL VIEW explode(holdings) t AS h
|
||||||
|
JOIN stocks_2010_end s ON h.symbol = s.symbol
|
||||||
|
GROUP BY p.portfolioId
|
||||||
|
ORDER BY p.portfolioId
|
||||||
|
"""
|
||||||
|
spark.sql(q_val).show(5)
|
||||||
|
print(f"Zeit e): {time.time()-t0:.2f}s")
|
||||||
|
|
||||||
|
|
||||||
|
def main(scon, spark):
|
||||||
|
init_view_stations(spark)
|
||||||
|
|
||||||
|
# Aufgabe 11
|
||||||
|
task_11a_rollup(spark, station_name="Kempten")
|
||||||
|
task_11b_rank(spark)
|
||||||
|
task_11c_groupingsets(spark)
|
||||||
|
|
||||||
|
# Aufgabe 12
|
||||||
|
init_view_stocks(spark)
|
||||||
|
task_12_stocks_analysis(spark)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main(scon, spark)
|
||||||
Reference in New Issue
Block a user