mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-11 09:59:33 +01:00
bla
This commit is contained in:
@@ -1,144 +1,167 @@
|
||||
from sparkstart import scon, spark
|
||||
from pyspark import SparkContext, rdd
|
||||
from pyspark.sql import SparkSession
|
||||
from pyspark.sql.types import StructType
|
||||
from pyspark.sql.types import StructField
|
||||
from pyspark.sql.types import StringType
|
||||
from pyspark.sql.types import FloatType
|
||||
from pyspark.sql.types import IntegerType
|
||||
|
||||
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType, FloatType
|
||||
from pyspark.sql import Row
|
||||
import pyspark.sql.functions as F
|
||||
import re
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
CDC_PATH = "/data/cdc/hourly/"
|
||||
HDFS_HOME = "hdfs://193.174.205.250:54310/"
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
GHCNDPATH = HDFSPATH + "ghcnd/"
|
||||
GHCNDHOMEPATH = "/data/ghcnd/"
|
||||
|
||||
|
||||
# a) Stationsdaten einlesen & als Parquet speichern
|
||||
def a(scon, spark, path=CDC_PATH):
|
||||
stationlines = scon.textFile(path + "TU_Stundenwerte_Beschreibung_Stationen.txt")
|
||||
# Aufgabe 9 a
|
||||
|
||||
stationlines = stationlines.zipWithIndex().filter(lambda x: x[1] >= 2).map(lambda x: x[0])
|
||||
|
||||
stationsplitlines = stationlines.map(lambda l: (
|
||||
l[0:5].strip(),
|
||||
l[6:14].strip(),
|
||||
l[15:23].strip(),
|
||||
int(l[24:41].strip()),
|
||||
float(l[42:52].strip()),
|
||||
float(l[53:61].strip()),
|
||||
l[61:101].strip(),
|
||||
l[102:].strip()
|
||||
))
|
||||
def import_data(spark: SparkSession, scon: SparkContext):
|
||||
"""
|
||||
%time import_data(spark, scon)
|
||||
"""
|
||||
|
||||
stationschema = StructType([
|
||||
StructField('stationid', StringType(), True),
|
||||
StructField('from_date', StringType(), True),
|
||||
StructField('to_date', StringType(), True),
|
||||
StructField('height', IntegerType(), True),
|
||||
StructField('latitude', FloatType(), True),
|
||||
StructField('longitude', FloatType(), True),
|
||||
StructField('stationname', StringType(), True),
|
||||
StructField('state', StringType(), True)
|
||||
])
|
||||
|
||||
stationframe = spark.createDataFrame(stationsplitlines, schema=stationschema)
|
||||
|
||||
stationframe.createOrReplaceTempView("cdc_stations")
|
||||
|
||||
outfile = HDFS_HOME + "/home/kramlingermike/" + "cdc_stations.parquet"
|
||||
stationframe.write.mode('overwrite').parquet(outfile)
|
||||
stationframe.cache()
|
||||
|
||||
# a) Beispielabfrage
|
||||
def get_all_cdc_stations(spark):
|
||||
result = spark.sql(f"""
|
||||
SELECT *
|
||||
FROM cdc_stations
|
||||
ORDER BY stationname
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
# a) Beispielabfrage
|
||||
def get_cdc_stations_per_state(spark):
|
||||
result = spark.sql(f"""
|
||||
SELECT
|
||||
state,
|
||||
COUNT(*) AS count
|
||||
FROM cdc_stations
|
||||
GROUP BY state
|
||||
ORDER BY count DESC
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
def b(scon, spark):
|
||||
lines = scon.textFile(CDC_PATH + "produkt*")
|
||||
# Daten in RDD einlesen
|
||||
rdd_station = scon.textFile("/data/cdc/hourly/TU_Stundenwerte_Beschreibung_Stationen.txt")
|
||||
|
||||
lines = lines.filter(lambda line: not line.startswith("STATIONS_ID"))
|
||||
lines = lines.zipWithIndex().filter(lambda x: x[1] >= 0).map(lambda x: x[0])
|
||||
|
||||
lines = lines.map(lambda l: l.split(";"))
|
||||
|
||||
lines = lines.map(lambda s: (
|
||||
s[0].strip(),
|
||||
s[1].strip()[:8],
|
||||
int(s[1].strip()[8:]),
|
||||
int(s[2].strip()),
|
||||
float(s[3].strip()),
|
||||
float(s[4].strip())
|
||||
))
|
||||
|
||||
schema = StructType([
|
||||
StructField("stationid", StringType(), True),
|
||||
StructField("date", StringType(), True),
|
||||
StructField("hour", IntegerType(), True),
|
||||
StructField("qn_9", IntegerType(), True),
|
||||
StructField("tt_tu", FloatType(), True),
|
||||
StructField("rf_tu", FloatType(), True)
|
||||
])
|
||||
|
||||
|
||||
df = spark.createDataFrame(lines, schema)
|
||||
|
||||
df.createOrReplaceTempView("cdc_hourly")
|
||||
|
||||
outfile = HDFS_HOME + "home/kramlingermike/" + "cdc_hourly.parquet"
|
||||
df.write.mode("overwrite").parquet(outfile)
|
||||
|
||||
def get_hourly_station(spark, stationid, limit=20):
|
||||
result = spark.sql(f"""
|
||||
SELECT *
|
||||
FROM cdc_hourly
|
||||
WHERE stationid = '{stationid}'
|
||||
ORDER BY date, hour
|
||||
LIMIT {limit}
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
def avg_temp_per_day(spark, stationid, limit=20):
|
||||
result = spark.sql(f"""
|
||||
SELECT date, ROUND(AVG(tt_tu),2) AS avg_temp
|
||||
FROM cdc_hourly
|
||||
WHERE stationid = '{stationid}'
|
||||
GROUP BY date
|
||||
ORDER BY date
|
||||
LIMIT {limit}
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
# Entfernen der ersten beiden Zeilen (Header und Trennzeile)
|
||||
rdd_station_filterd = (rdd_station
|
||||
.zipWithIndex() # jede Zeile bekommt idx
|
||||
.filter(lambda x: x[1] >= 2) # nur Zeilen mit idx >= 2 behalten
|
||||
.map(lambda x: x[0])) # idx wieder entfernen
|
||||
|
||||
|
||||
rdd_station_splitlines = rdd_station_filterd.map(
|
||||
lambda l: (
|
||||
int(l[:6].strip()), # Station ID
|
||||
l[6:15], # von_datum
|
||||
l[15:24], # bis_datum
|
||||
float(l[24:40].strip()), # stations höhe
|
||||
float(l[40:53].strip()), # geoBreite
|
||||
float(l[53:61].strip()), # geoHöhe
|
||||
l[61:142], # Stationsname
|
||||
l[142:-1] # Bundesland
|
||||
))
|
||||
|
||||
# Datenschema festlegen
|
||||
stationschema = StructType(
|
||||
[
|
||||
StructField("stationId", IntegerType(), True),
|
||||
StructField("von_datum", StringType(), True),
|
||||
StructField("bis_datum", StringType(), True),
|
||||
StructField("hoehe", FloatType(), True),
|
||||
StructField("geo_breite", FloatType(), True),
|
||||
StructField("geo_laenge", FloatType(), True),
|
||||
StructField("station_name", StringType(), True),
|
||||
StructField("bundesland", StringType(), True)
|
||||
]
|
||||
)
|
||||
|
||||
# Data Frame erzeugen
|
||||
stationframe = spark.createDataFrame(rdd_station_splitlines, schema=stationschema)
|
||||
stationframe.printSchema()
|
||||
|
||||
# Temporäre View erzeugen
|
||||
stationframe.createOrReplaceTempView("german_stations")
|
||||
|
||||
# Data Frame in HDFS speichern
|
||||
stationframe.write.mode("overwrite").parquet(
|
||||
HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||
)
|
||||
|
||||
|
||||
|
||||
def read_data_from_parquet(spark):
|
||||
"""
|
||||
read_data_from_parquet(spark)
|
||||
"""
|
||||
df = spark.read.parquet(HDFSPATH + "home/heiserervalentin/german_stations.parquet")
|
||||
df.createOrReplaceTempView("german_stations")
|
||||
df.cache()
|
||||
|
||||
def sql_querys(spark):
|
||||
"""
|
||||
sql_querys(spark)
|
||||
"""
|
||||
spark.sql("SELECT * FROM german_stations").show(5, truncate=False)
|
||||
spark.sql("SELECT COUNT(*) AS Anzahl FROM german_stations").show()
|
||||
spark.sql("SELECT MAX(geo_breite) FROM german_stations").show()
|
||||
df = spark.sql("SELECT * FROM german_stations").toPandas()
|
||||
|
||||
plt.figure(figsize=[6,6])
|
||||
plt.scatter(df.geo_laenge, df.geo_breite, marker='.', color = 'r')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def import_produkt_files(spark: SparkSession, scon: SparkContext, path='/data/cdc/hourly/'):
|
||||
"""
|
||||
import_produkt_files(spark, scon)
|
||||
"""
|
||||
|
||||
# Daten in RDD einlesen
|
||||
rdd_produkt = scon.textFile(f"{path}/produkt*")
|
||||
|
||||
# Kopfzeile und Leerzeichen filtern
|
||||
rdd_filterd = rdd_produkt \
|
||||
.filter(lambda l: l != 'STATIONS_ID;MESS_DATUM;QN_9;TT_TU;RF_TU;eor') \
|
||||
.map(lambda l: [x.strip() for x in l.split(';')])
|
||||
|
||||
# Zeilen in Felder aufteilen
|
||||
rdd_produkt_splitlines = rdd_filterd.map(
|
||||
lambda l: (
|
||||
int(l[0]), # Stat_id
|
||||
l[1][:8], # Messdatum
|
||||
int(l[1][8:10]), # Messstunde
|
||||
int(l[2]), # Qualitätsniveau
|
||||
float(l[3]), # Lufttemp.
|
||||
float(l[4]), # rel. Luftfeuchte
|
||||
int(l[1][0:4]) # jahr
|
||||
)
|
||||
)
|
||||
|
||||
print(rdd_produkt_splitlines.take(5))
|
||||
|
||||
# Datenschema definieren
|
||||
product_schema = StructType(
|
||||
[
|
||||
StructField("stationId", IntegerType(), True),
|
||||
StructField("date", StringType(), True),
|
||||
StructField("hour", IntegerType(), True),
|
||||
StructField("QN_9", IntegerType(), True),
|
||||
StructField("TT_TU", FloatType(), True),
|
||||
StructField("RF_TU", FloatType(), True),
|
||||
StructField("jahr", IntegerType(), True)
|
||||
]
|
||||
)
|
||||
|
||||
product_frame = spark.createDataFrame(rdd_produkt_splitlines, schema=product_schema)
|
||||
product_frame.printSchema()
|
||||
product_frame.createOrReplaceTempView("german_stations_data")
|
||||
|
||||
|
||||
product_frame.write.mode("overwrite").parquet(
|
||||
HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||
)
|
||||
|
||||
|
||||
|
||||
def read_product_data_from_parquet(spark):
|
||||
"""
|
||||
read_product_data_from_parquet(spark)
|
||||
"""
|
||||
df = spark.read.parquet(HDFSPATH + "home/heiserervalentin/german_stations_data.parquet")
|
||||
df.createOrReplaceTempView("german_stations_data")
|
||||
df.cache()
|
||||
|
||||
def main(scon, spark):
|
||||
"""
|
||||
main(scon, spark)
|
||||
"""
|
||||
# Daten importieren
|
||||
import_data(spark, scon)
|
||||
read_data_from_parquet(spark)
|
||||
sql_querys(spark)
|
||||
|
||||
print("a)")
|
||||
a(scon, spark)
|
||||
print("Beispielabfrage: (Alle Stationen:)")
|
||||
get_all_cdc_stations(spark)
|
||||
print("Beispielabfrage: (Alle Stationen pro Bundesland)")
|
||||
get_cdc_stations_per_state(spark)
|
||||
print("b)")
|
||||
b(scon, spark)
|
||||
print("Beispielabfrage: (Alle Daten für eine Station:)")
|
||||
get_hourly_station(spark, "4271")
|
||||
print("Beispielabfrage: (Durchschnittliche Temperatur pro Tag für eine Station:)")
|
||||
avg_temp_per_day(spark, "4271")
|
||||
import_produkt_files(spark, scon)
|
||||
read_product_data_from_parquet(spark)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
main(scon, spark)
|
||||
Reference in New Issue
Block a user