Aufgabe 10

This commit is contained in:
2025-12-11 20:39:21 +01:00
parent de3782d570
commit f89d39d420

View File

@@ -59,101 +59,96 @@ def duration_circle_size(spark: SparkSession):
def compute_daily_and_yearly_frosts(spark: SparkSession):
q_daily_max = (
"SELECT stationId, date, SUBSTR(CAST(date AS STRING),1,4) AS year, MAX(TT_TU) AS max_temp "
"FROM german_stations_data "
"WHERE TT_TU IS NOT NULL "
"GROUP BY stationId, date"
)
daily_max = spark.sql(q_daily_max)
daily_max.createOrReplaceTempView('daily_max')
q_daily_max = (
"SELECT stationId, date, SUBSTR(CAST(date AS STRING),1,4) AS year, MAX(TT_TU) AS max_temp "
"FROM german_stations_data "
"WHERE TT_TU IS NOT NULL AND TT_TU > -50 AND TT_TU < 60 "
"GROUP BY stationId, date"
)
daily_max = spark.sql(q_daily_max)
daily_max.createOrReplaceTempView('daily_max')
# mark a day as frost if max_temp < 0
q_daily_frost = (
"SELECT stationId, year, CASE WHEN max_temp < 0 THEN 1 ELSE 0 END AS is_frost "
"FROM daily_max"
)
daily_frost = spark.sql(q_daily_frost)
daily_frost.createOrReplaceTempView('daily_frost')
# mark a day as frost if max_temp < 0
q_daily_frost = (
"SELECT stationId, year, CASE WHEN max_temp < 0 THEN 1 ELSE 0 END AS is_frost "
"FROM daily_max"
)
daily_frost = spark.sql(q_daily_frost)
daily_frost.createOrReplaceTempView('daily_frost')
# yearly frostdays per station
q_station_year = (
"SELECT stationId, year, SUM(is_frost) AS frost_days "
"FROM daily_frost GROUP BY stationId, year"
)
station_year_frost = spark.sql(q_station_year)
station_year_frost.createOrReplaceTempView('station_year_frost')
# yearly frostdays per station
q_station_year = (
"SELECT stationId, year, SUM(is_frost) AS frost_days "
"FROM daily_frost GROUP BY stationId, year"
)
station_year_frost = spark.sql(q_station_year)
station_year_frost.createOrReplaceTempView('station_year_frost')
def frost_analysis(spark: SparkSession, year=2024, station_name_matches=('kempten',)):
compute_daily_and_yearly_frosts(spark)
compute_daily_and_yearly_frosts(spark)
# Debug: check available years and data
spark.sql("SELECT year, COUNT(*) as cnt FROM station_year_frost GROUP BY year ORDER BY year").show(50)
q_hist = (
f"SELECT frost_days, COUNT(*) AS station_count "
f"FROM station_year_frost WHERE year = '{year}' GROUP BY frost_days ORDER BY frost_days"
)
hist_df = spark.sql(q_hist)
q_hist = (
f"SELECT frost_days, COUNT(*) AS station_count "
f"FROM station_year_frost WHERE year = '{year}' GROUP BY frost_days ORDER BY frost_days"
)
hist_df = spark.sql(q_hist)
hist_pdf = hist_df.toPandas()
if hist_pdf.empty:
print(f"No frost data found for year {year}. Trying to find available years...")
q_all = "SELECT frost_days, COUNT(*) AS station_count FROM station_year_frost GROUP BY frost_days ORDER BY frost_days"
hist_pdf = spark.sql(q_all).toPandas()
if hist_pdf.empty:
print("No frost data available at all. Check if TT_TU column contains valid temperature data.")
return
print(f"Found {len(hist_pdf)} frost day categories across all years")
plt.figure(figsize=(8, 5))
plt.bar(hist_pdf.frost_days, hist_pdf.station_count, color='steelblue')
plt.xlabel('Number of Frost Days in year ' + str(year))
plt.ylabel('Number of Stations')
plt.title(f'Stations vs Frost Days ({year})')
plt.tight_layout()
plt.show()
hist_pdf = hist_df.toPandas()
if hist_pdf.empty:
print(f"No frost data found for year {year}. Trying to find available years...")
# Try without year filter to see if data exists
q_all = "SELECT frost_days, COUNT(*) AS station_count FROM station_year_frost GROUP BY frost_days ORDER BY frost_days"
hist_pdf = spark.sql(q_all).toPandas()
if hist_pdf.empty:
print("No frost data available at all. Check if TT_TU column contains valid temperature data.")
return
print(f"Found {len(hist_pdf)} frost day categories across all years")
plt.figure(figsize=(8, 5))
plt.bar(hist_pdf.frost_days, hist_pdf.station_count, color='steelblue')
plt.xlabel('Number of Frost Days in year ' + str(year))
plt.ylabel('Number of Stations')
plt.title(f'Stations vs Frost Days ({year})')
plt.tight_layout()
plt.show()
for name in station_name_matches:
q_find = f"SELECT stationId, station_name FROM german_stations WHERE lower(station_name) LIKE '%{name.lower()}%'"
ids_df = spark.sql(q_find)
ids = ids_df.collect()
if not ids:
print(f"No stations found matching '{name}'")
continue
for r in ids:
sid = r['stationId']
sname = r['station_name']
print(f"Analyzing stationId={sid} name={sname}")
for name in station_name_matches:
q_find = f"SELECT stationId, station_name FROM german_stations WHERE lower(station_name) LIKE '%{name.lower()}%'"
ids_df = spark.sql(q_find)
ids = ids_df.collect()
if not ids:
print(f"No stations found matching '{name}'")
continue
for r in ids:
sid = r['stationId']
sname = r['station_name']
print(f"Analyzing stationId={sid} name={sname}")
q_ts = (
"SELECT year, frost_days, "
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) RANGE BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg_5, "
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) RANGE BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg_20 "
f"FROM station_year_frost WHERE stationId = {sid} ORDER BY CAST(year AS INT)"
)
ts_df = spark.sql(q_ts)
# compute frostdays + 5-yr and 20-yr rolling averages using window frame
q_ts = (
"SELECT year, frost_days, "
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg_5, "
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) ROWS BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg_20 "
f"FROM station_year_frost WHERE stationId = {sid} ORDER BY CAST(year AS INT)"
)
ts_df = spark.sql(q_ts)
pdf = ts_df.toPandas()
if pdf.empty:
print(f"No yearly frost data for station {sid}")
continue
pdf = ts_df.toPandas()
if pdf.empty:
print(f"No yearly frost data for station {sid}")
continue
pdf['year'] = pdf['year'].astype(int)
plt.figure(figsize=(10, 5))
plt.plot(pdf.year, pdf.frost_days, label='Frostdays (year)', marker='o')
plt.plot(pdf.year, pdf.avg_5, label='5-year avg', linestyle='--')
plt.plot(pdf.year, pdf.avg_20, label='20-year avg', linestyle=':')
plt.xlabel('Year')
plt.ylabel('Frost Days')
plt.title(f'Frost Days over Years for {sname} (station {sid})')
plt.legend()
plt.tight_layout()
plt.show()
pdf['year'] = pdf['year'].astype(int)
plt.figure(figsize=(10, 5))
plt.plot(pdf.year, pdf.frost_days, label='Frostdays (year)', marker='o')
plt.plot(pdf.year, pdf.avg_5, label='5-year avg', linestyle='--')
plt.plot(pdf.year, pdf.avg_20, label='20-year avg', linestyle=':')
plt.xlabel('Year')
plt.ylabel('Frost Days')
plt.title(f'Frost Days over Years for {sname} (station {sid})')
plt.legend()
plt.tight_layout()
plt.show()
def height_frost_correlation(spark: SparkSession):