Compare commits

..

1 Commits

Author SHA1 Message Date
1b2de95b2e 12 2025-12-11 21:30:51 +01:00
2 changed files with 350 additions and 360 deletions

View File

@@ -1,219 +1,276 @@
from __future__ import annotations
from sparkstart import scon, spark
from pyspark.sql import SparkSession
import matplotlib.pyplot as plt
import pandas as pd
HDFSPATH = "hdfs://193.174.205.250:54310/"
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
def read_parquet_tables(spark: SparkSession) -> None:
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
def read_parquets(spark: SparkSession):
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
spark.read.parquet(stations_path).createOrReplaceTempView("german_stations")
spark.read.parquet(products_path).createOrReplaceTempView("german_stations_data")
stations_df = spark.read.parquet(stations_path)
stations_df.createOrReplaceTempView("german_stations")
# --- Aufgabe A ---
products_df = spark.read.parquet(products_path)
products_df.createOrReplaceTempView("german_stations_data")
def create_mma_rollup(spark: SparkSession, station_id: int):
query = f"""
WITH processed_data AS (
stations_df.cache()
products_df.cache()
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
start_time = time.time()
# 1. Station ID finden
# Case-insensitive search
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE lower(station_name) LIKE '%{station_name.lower()}%'")
try:
sid = sid_df.collect()[0]['stationId']
print(f"Station found: {station_name} -> ID {sid}")
except IndexError:
print(f"Station {station_name} nicht gefunden.")
return
# 2. Rollup Query vorbereiten
# FIX: Parse string date 'YYYYMMDD' to real DATE object first
q_prep = f"""
SELECT
TT_TU,
hour AS messtunde,
TO_DATE(SUBSTR(date, 1, 4), 'yyyy') AS jahr,
TO_DATE(CONCAT(SUBSTR(date, 1, 4), '-', LPAD(CAST(QUARTER(TO_DATE(date, 'yyyyMMdd'))*3-2 AS STRING), 2, '0'), '-01')) AS quartal,
TO_DATE(CONCAT(SUBSTR(date, 1, 4), '-', SUBSTR(date, 5, 2), '-01')) AS monat,
TO_DATE(date, 'yyyyMMdd') AS tag
YEAR(TO_DATE(date, 'yyyyMMdd')) as yr,
QUARTER(TO_DATE(date, 'yyyyMMdd')) as qt,
MONTH(TO_DATE(date, 'yyyyMMdd')) as mo,
DAY(TO_DATE(date, 'yyyyMMdd')) as da,
TT_TU
FROM german_stations_data
WHERE stationId = {station_id}
WHERE stationId = {sid}
AND TT_TU IS NOT NULL
AND TT_TU <> -999
)
SELECT
MIN(TT_TU) AS minTemperatur,
MAX(TT_TU) AS maxTemperatur,
AVG(TT_TU) AS avgTemperatur,
jahr,
quartal,
monat,
tag,
messtunde
FROM processed_data
GROUP BY ROLLUP (jahr, quartal, monat, tag, messtunde)
ORDER BY jahr, quartal, monat, tag, messtunde
AND TT_TU > -50
AND TT_TU < 60
"""
df = spark.sql(query)
df.createOrReplaceTempView("mmacdcdata")
df.cache()
df.show(10)
spark.sql(q_prep).createOrReplaceTempView("data_prep")
def plot_date_values(spark: SparkSession, level: str):
filters = {
"days": "YEAR(jahr) > 2017 AND YEAR(jahr) < 2021 AND messtunde IS NULL AND tag IS NOT NULL",
"months": "YEAR(jahr) > 1999 AND YEAR(jahr) < 2021 AND tag IS NULL AND monat IS NOT NULL",
"quartals": "YEAR(jahr) > 1999 AND YEAR(jahr) < 2021 AND tag IS NULL AND monat IS NULL AND quartal IS NOT NULL",
"years": "YEAR(jahr) > 1999 AND YEAR(jahr) < 2021 AND tag IS NULL AND monat IS NULL AND quartal IS NULL AND jahr IS NOT NULL"
}
x_col = {"days": "tag", "months": "monat", "quartals": "quartal", "years": "jahr"}
# 3. Rollup Execution
# Note: We use string construction for quarters/months to ensure we get a valid date string for plotting
q_rollup = """
SELECT
yr, qt, mo, da,
MIN(TT_TU) as min_temp,
MAX(TT_TU) as max_temp,
AVG(TT_TU) as avg_temp,
pdf = spark.sql(f"SELECT * FROM mmacdcdata WHERE {filters[level]}").toPandas()
if pdf.empty: return
-- Construct dates for plotting (handling the NULLs from ROLLUP)
-- For Quarter: Use 1st month of quarter
DATE(concat_ws('-', yr, cast(qt*3-2 as int), '01')) as qt_date,
-- For Month: Use 1st day of month
MAKE_DATE(yr, mo, 1) as mo_date,
-- For Year: Use Jan 1st
MAKE_DATE(yr, 1, 1) as yr_date,
-- For Day: Use actual date
MAKE_DATE(yr, mo, da) as da_date
plt.figure(figsize=(10, 5))
plt.plot(pdf[x_col[level]], pdf["maxTemperatur"], "red", label="Max")
plt.plot(pdf[x_col[level]], pdf["avgTemperatur"], "green", label="Avg")
plt.plot(pdf[x_col[level]], pdf["minTemperatur"], "blue", label="Min")
plt.title(f"{level.capitalize()}")
plt.legend()
plt.grid(True)
plt.show()
FROM data_prep
GROUP BY ROLLUP(yr, qt, mo, da)
"""
# --- Aufgabe B ---
df_rollup = spark.sql(q_rollup)
df_rollup.cache()
df_rollup.createOrReplaceTempView("station_rollup")
def create_tempmonat(spark: SparkSession):
query = """
WITH base_data AS (
# Trigger Action
count = df_rollup.count()
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start_time:.2f}s")
# --- PLOTTING ---
# Plot 1: Tageswerte (letzte 3 Jahre)
# Filter: All levels must be present (not null)
q_days = """
SELECT da_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup WHERE yr IS NOT NULL)
ORDER BY date
"""
pdf_days = spark.sql(q_days).toPandas()
if pdf_days.empty:
print("Warnung: Keine Daten für Tages-Plot gefunden.")
else:
plt.figure(1, figsize=(10, 5))
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
plt.xlabel('Date')
plt.ylabel('Temp °C')
plt.tight_layout()
plt.show()
# Plot 2: Monatswerte (10-20 Jahre)
# Filter: Day is NULL (aggregation level), but Month is NOT NULL
q_months = """
SELECT mo_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup WHERE yr IS NOT NULL)
ORDER BY date
"""
pdf_months = spark.sql(q_months).toPandas()
if not pdf_months.empty:
plt.figure(2, figsize=(10, 5))
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
plt.xlabel('Date')
plt.ylabel('Temp °C')
plt.tight_layout()
plt.show()
# Plot 3: Quartalswerte
# Filter: Month is NULL, Quarter is NOT NULL
q_quarters = """
SELECT qt_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup WHERE yr IS NOT NULL)
ORDER BY date
"""
pdf_quarters = spark.sql(q_quarters).toPandas()
if not pdf_quarters.empty:
plt.figure(3, figsize=(10, 5))
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
plt.tight_layout()
plt.show()
# Plot 4: Jahreswerte
# Filter: Quarter is NULL, Year is NOT NULL
q_years = """
SELECT yr_date as date, min_temp, max_temp, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup WHERE yr IS NOT NULL)
ORDER BY date
"""
pdf_years = spark.sql(q_years).toPandas()
if not pdf_years.empty:
plt.figure(4, figsize=(10, 5))
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
plt.legend()
plt.tight_layout()
plt.show()
def task_11b_rank(spark: SparkSession):
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
q_tempmonat = """
SELECT
d.stationId,
gs.station_name AS stationsname,
d.TT_TU,
TO_DATE(SUBSTR(d.date, 1, 4), 'yyyy') AS jahr_val,
TO_DATE(CONCAT(SUBSTR(d.date, 1, 4), '-', SUBSTR(d.date, 5, 2), '-01')) AS monat_val
s.station_name,
SUBSTR(CAST(d.date AS STRING), 1, 4) as year,
SUBSTR(CAST(d.date AS STRING), 6, 2) as month,
MIN(d.TT_TU) as min_t,
MAX(d.TT_TU) as max_t,
AVG(d.TT_TU) as avg_t
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
)
SELECT
stationId,
stationsname,
MIN(TT_TU) AS minTemperatur,
MAX(TT_TU) AS maxTemperatur,
AVG(TT_TU) AS avgTemperatur,
jahr_val AS jahr,
monat_val AS monat
FROM base_data
GROUP BY stationId, stationsname, jahr_val, monat_val
JOIN german_stations s ON d.stationId = s.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU > -50
GROUP BY d.stationId, s.station_name, year, month
"""
spark.sql(query).cache().createOrReplaceTempView("tempmonat")
df_tm = spark.sql(q_tempmonat)
df_tm.createOrReplaceTempView("tempmonat")
def rank_temperatures(spark: SparkSession, limit: int, year: int = None):
where_clause = f"WHERE YEAR(jahr) = {year}" if year else ""
query = f"""
SELECT stationid, stationsname, monat, minTemperatur,
RANK() OVER (ORDER BY minTemperatur ASC) AS rangMIN,
maxTemperatur,
RANK() OVER (ORDER BY maxTemperatur DESC) AS rangMAX,
avgTemperatur,
RANK() OVER (ORDER BY avgTemperatur DESC) AS rangAVG
FROM tempmonat
{where_clause}
ORDER BY rangMIN
"""
spark.sql(query).show(limit, truncate=False)
# --- Aufgabe C ---
def create_grouping_sets_view(spark: SparkSession):
query = """
WITH base_gs AS (
# 1. Ranking Partitioniert nach Monat im Jahr 2015
print(" > Berechne Ranking für 2015 (partitioniert nach Monat)...")
q_rank_2015 = """
SELECT
d.stationId,
-- TRIM entfernt Leerzeichen für saubere Tabellen
TRIM(gs.bundesland) AS bundesland_clean,
d.TT_TU,
-- Extrahiere Jahr und Kalendermonat (1-12)
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS jahr_val,
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS monat_val
month, station_name, min_t,
RANK() OVER (PARTITION BY month ORDER BY min_t ASC) as rank_min,
RANK() OVER (PARTITION BY month ORDER BY max_t ASC) as rank_max,
RANK() OVER (PARTITION BY month ORDER BY avg_t ASC) as rank_avg
FROM tempmonat
WHERE year = '2015'
ORDER BY rank_min, month
"""
spark.sql(q_rank_2015).show(10)
# 2. Globales Ranking (über alle Monate/Jahre hinweg)
print(" > Berechne Ranking global (kälteste Monate aller Zeiten)...")
q_rank_global = """
SELECT
year, month, station_name, min_t,
RANK() OVER (ORDER BY min_t ASC) as rank_min,
RANK() OVER (ORDER BY max_t ASC) as rank_max,
RANK() OVER (ORDER BY avg_t ASC) as rank_avg
FROM tempmonat
ORDER BY rank_min
"""
spark.sql(q_rank_global).show(10)
print("11b: Fertig.")
def task_11c_groupingsets(spark: SparkSession):
print("\n--- Aufgabe 11c: Grouping Sets ---")
q_prep = """
SELECT
CAST(SUBSTR(CAST(d.date AS STRING), 1, 4) AS INT) as year,
CAST(SUBSTR(CAST(d.date AS STRING), 6, 2) AS INT) as month,
s.station_name,
s.bundesland,
d.TT_TU
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
)
SELECT
stationId,
bundesland_clean AS bundesland,
jahr_val AS jahr,
monat_val AS monat,
MIN(TT_TU) AS minTemperatur,
MAX(TT_TU) AS maxTemperatur,
AVG(TT_TU) AS avgTemperatur
FROM base_gs
GROUP BY GROUPING SETS (
(bundesland_clean, jahr_val), -- 1. Jahr und Bundesland
(stationId, jahr_val), -- 2. Jahr und Station
(bundesland_clean, monat_val) -- 3. Monat und Bundesland
)
JOIN german_stations s ON d.stationId = s.stationId
WHERE d.TT_TU > -50
"""
df = spark.sql(query)
spark.sql(q_prep).createOrReplaceTempView("gs_base")
df.cache()
df.createOrReplaceTempView("tempmma_gs")
def show_seperate_gs(spark: SparkSession, limit: int):
# Filter: stationId muss NULL sein, monat muss NULL sein
spark.sql("""
q_sets = """
SELECT
jahr,
year,
month,
bundesland,
minTemperatur,
maxTemperatur,
ROUND(avgTemperatur, 2) as avgTemperatur
FROM tempmma_gs
WHERE bundesland IS NOT NULL
AND jahr IS NOT NULL
AND stationId IS NULL
AND monat IS NULL
ORDER BY jahr DESC, bundesland ASC
""").show(limit, truncate=False)
station_name,
MIN(TT_TU) as min_t, MAX(TT_TU) as max_t, AVG(TT_TU) as avg_t
FROM gs_base
GROUP BY GROUPING SETS (
(year, bundesland),
(year, station_name),
(month, bundesland)
)
"""
df_gs = spark.sql(q_sets)
df_gs.cache()
df_gs.createOrReplaceTempView("grouping_result")
# Filter: bundesland muss NULL sein, monat muss NULL sein
spark.sql("""
SELECT
jahr,
stationId,
minTemperatur,
maxTemperatur,
ROUND(avgTemperatur, 2) as avgTemperatur
FROM tempmma_gs
WHERE stationId IS NOT NULL
AND jahr IS NOT NULL
AND bundesland IS NULL
ORDER BY jahr DESC, stationId ASC
""").show(limit, truncate=False)
# Action zum Cachen
df_gs.count()
print("Grouping Sets berechnet.")
# Filter: stationId muss NULL sein, jahr muss NULL sein
spark.sql("""
SELECT
monat,
bundesland,
minTemperatur,
maxTemperatur,
ROUND(avgTemperatur, 2) as avgTemperatur
FROM tempmma_gs
WHERE bundesland IS NOT NULL
AND monat IS NOT NULL
AND jahr IS NULL
ORDER BY monat ASC, bundesland ASC
""").show(limit, truncate=False)
print("Auswahl 1: Jahr & Bundesland")
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
print("Auswahl 2: Jahr & Station")
spark.sql("SELECT year, station_name, avg_t FROM grouping_result WHERE bundesland IS NULL AND month IS NULL ORDER BY year DESC, station_name").show(5)
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
def main(scon, spark):
read_parquet_tables(spark)
read_parquets(spark)
# Kempten ID = 2559
create_mma_rollup(spark, 2559)
for level in ["years", "quartals", "months", "days"]:
plot_date_values(spark, level)
# Aufgabe 11
task_11a_rollup(spark, station_name="Kempten")
task_11b_rank(spark)
task_11c_groupingsets(spark)
create_tempmonat(spark)
print("Rangfolgen 2015:")
rank_temperatures(spark, 18, 2015)
print("Rangfolgen Gesamt:")
rank_temperatures(spark, 18)
create_grouping_sets_view(spark)
show_seperate_gs(spark, 10)
if __name__ == "__main__":
if __name__ == '__main__':
main(scon, spark)

View File

@@ -1,190 +1,123 @@
from sparkstart import spark
from sparkstart import scon, spark
from pyspark.sql import SparkSession
import time
import matplotlib.pyplot as plt
import pandas as pd
HDFSPATH = "hdfs://193.174.205.250:54310/"
SOURCEPATH = HDFSPATH + "stocks/"
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
def read_data(spark: SparkSession) -> None:
"""
Loads the existing Parquet files from HDFS into Spark Views.
"""
print(f"--- Loading Views from {SOURCEPATH} ---")
try:
# Load Stocks
spark.read.parquet(SOURCEPATH + "stocks.parquet").createOrReplaceTempView("stocks")
print("-> View 'stocks' loaded.")
def init_view_stocks(spark):
"""Lädt die Stocks-Daten für Aufgabe 12"""
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
# Load Portfolio
spark.read.parquet(SOURCEPATH + "portfolio.parquet").createOrReplaceTempView("portfolio")
print("-> View 'portfolio' loaded.")
# ---------------------------------------------------------
# AUFGABE 12
# ---------------------------------------------------------
except Exception as e:
print(f"CRITICAL ERROR: Could not load data. {e}")
print("Please check if the path exists in HDFS.")
def task_12_stocks_analysis(spark: SparkSession):
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
# --- Aufgabe A ---
def first_last_quotation(spark: SparkSession, num: int = 10) -> None:
print("\n--- Aufgabe A: First/Last Quotation ---")
query = """
SELECT symbol,
MIN(dt) AS altNotierung,
MAX(dt) AS neuNotierung
FROM stocks
GROUP BY symbol
ORDER BY symbol
"""
df_quotation = spark.sql(query)
df_quotation.show(num, truncate=False)
df_quotation.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse1.parquet")
print("-> Imported nyse1")
# --- Aufgabe B ---
def min_max_avg_close(spark: SparkSession, num: int = 10) -> None:
print("\n--- Aufgabe B: Min/Max/Avg Close 2009 ---")
query = """
SELECT symbol,
MIN(close) AS minClose,
MAX(close) AS maxClose,
AVG(close) AS avgClose
FROM stocks
WHERE YEAR(dt) = 2009
GROUP BY symbol
ORDER BY symbol
"""
df_close = spark.sql(query)
df_close.show(num, truncate=False)
df_close.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse2.parquet")
print("-> Imported nyse2")
# --- Aufgabe C ---
def sum_count_avg_portfolios(spark: SparkSession, num: int = 10) -> None:
print("\n--- Aufgabe C: Portfolio Aggregations ---")
# 1. Explode
query_explode = """
SELECT pid, Attr
FROM portfolio
LATERAL VIEW EXPLODE(bonds) AS Attr
"""
df_temp = spark.sql(query_explode)
df_temp.createOrReplaceTempView("temp")
# 2. Aggregate
query_agg = """
SELECT Attr.symbol AS symbol,
COUNT(pid) AS anzpid,
SUM(Attr.num) AS anzAktien,
AVG(Attr.num) AS avgAnzAktien
FROM temp
GROUP BY symbol
ORDER BY symbol
"""
df_sum_sel_cnt_avg = spark.sql(query_agg)
df_sum_sel_cnt_avg.show(num, truncate=False)
df_sum_sel_cnt_avg.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse3.parquet")
print("-> Imported nyse3")
# --- Aufgabe D ---
def symbols_not_in_portfolio(spark: SparkSession, num: int = 10) -> None:
print("\n--- Aufgabe D: Symbols not in Portfolio ---")
query_explode = """
SELECT Attr
FROM portfolio
LATERAL VIEW EXPLODE(bonds) AS Attr
"""
df_temp = spark.sql(query_explode)
df_temp.createOrReplaceTempView("tempport")
query_distinct = """
SELECT DISTINCT s.symbol
FROM stocks s
LEFT OUTER JOIN tempport p ON s.symbol = p.Attr.symbol
WHERE p.Attr.symbol IS NULL
ORDER BY s.symbol
"""
df_symbols = spark.sql(query_distinct)
df_symbols.show(num, truncate=False)
df_symbols.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse4.parquet")
print("-> Imported nyse4")
# --- Aufgabe E ---
def value_portfolio_2010(spark: SparkSession, num: int = 10) -> None:
print("\n--- Aufgabe E: Portfolio Value 2010 ---")
# 1. Portfolio explodieren
query_portfolio = """
SELECT pid, Attr.symbol AS symbol, Attr.num AS anzAktien
FROM portfolio
LATERAL VIEW EXPLODE(bonds) AS Attr
ORDER BY pid
"""
df_lview = spark.sql(query_portfolio)
df_lview.createOrReplaceTempView("tempportfolio")
# df_lview.show(num, truncate=False) # Optional zur Kontrolle
# 2. Stocks filtern (Neuester Kurs in 2010)
query_stocks = """
SELECT s.symbol, s.dt, s.close
FROM stocks s
INNER JOIN (
SELECT symbol, MAX(dt) AS datum
# a) Erstes und letztes Datum je Symbol
print("a) Min/Max Datum pro Symbol")
t0 = time.time()
q_a = """
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
FROM stocks
GROUP BY symbol
) AS grpStocks
ON s.symbol = grpStocks.symbol AND s.dt = grpStocks.datum
WHERE YEAR(dt) = 2010
ORDER BY datum
ORDER BY symbol
"""
df_2010 = spark.sql(query_stocks)
df_2010.createOrReplaceTempView("tempstocks")
# df_2010.show(num, truncate=False) # Optional zur Kontrolle
spark.sql(q_a).show(5)
print(f"Zeit a): {time.time()-t0:.2f}s")
# 3. Wert berechnen (Join)
query_value = """
SELECT p.*, s.close * p.anzAktien AS wert
FROM tempportfolio p, tempstocks s
WHERE s.symbol = p.symbol
ORDER BY p.pid
# b) Aggregationen 2009
print("\nb) High/Low/Avg Close 2009")
t0 = time.time()
q_b = """
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close
FROM stocks
WHERE YEAR(date) = 2009
GROUP BY symbol
ORDER BY symbol
"""
df_value = spark.sql(query_value)
df_value.createOrReplaceTempView("tempvalue")
# df_value.show(num, truncate=False) # Optional zur Kontrolle
spark.sql(q_b).show(5)
print(f"Zeit b): {time.time()-t0:.2f}s")
# 4. Gesamtwert aggregieren
query_sum = """
SELECT pid, SUM(wert) AS gesamtwert
FROM tempvalue
GROUP BY pid
ORDER BY pid
# c) Lateral View (Explode Portfolio)
print("\nc) Lateral View: Aktien in Portfolios")
t0 = time.time()
q_c = """
SELECT
h.symbol,
SUM(h.amount) as total_shares,
COUNT(p.portfolioId) as num_portfolios,
AVG(h.amount) as avg_per_portfolio
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
GROUP BY h.symbol
ORDER BY h.symbol
"""
df_sum = spark.sql(query_sum)
df_sum.show(num, truncate=False)
spark.sql(q_c).show(5)
print(f"Zeit c): {time.time()-t0:.2f}s")
df_sum.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse5.parquet")
print("-> Imported nyse5")
# d) Symbole in keinem Portfolio (Anti Join)
print("\nd) Symbole ohne Portfolio")
t0 = time.time()
q_d = """
SELECT DISTINCT s.symbol
FROM stocks s
LEFT ANTI JOIN (
SELECT DISTINCT h.symbol
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
) p_sym ON s.symbol = p_sym.symbol
ORDER BY s.symbol
"""
spark.sql(q_d).show(5)
print(f"Zeit d): {time.time()-t0:.2f}s")
input(">> 12 a-d fertig. Check UI. Enter für e)...")
# e) Portfolio Wert Ende 2010
print("\ne) Portfolio Bewertung Ende 2010")
t0 = time.time()
q_last_price = """
SELECT symbol, close
FROM (
SELECT
symbol,
close,
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
FROM stocks
WHERE YEAR(date) = 2010
) tmp
WHERE rn = 1
"""
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren
q_val = """
SELECT
p.portfolioId,
SUM(h.amount * s.close) as portfolio_value_2010
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
JOIN stocks_2010_end s ON h.symbol = s.symbol
GROUP BY p.portfolioId
ORDER BY p.portfolioId
"""
spark.sql(q_val).show(5)
print(f"Zeit e): {time.time()-t0:.2f}s")
def main(scon, spark):
read_data(spark)
# Aufgabe 12
init_view_stocks(spark)
task_12_stocks_analysis(spark)
first_last_quotation(spark, 10)
min_max_avg_close(spark, 10)
sum_count_avg_portfolios(spark, 5)
symbols_not_in_portfolio(spark, 5)
value_portfolio_2010(spark, 10)
if __name__ == "__main__":
if __name__ == '__main__':
main(scon, spark)