from sparkstart import scon, spark import ghcnd_stations import matplotlib.pyplot as plt import time # a) Scatterplot: alle Stationen (lon/lat) def plot_all_stations(spark): q = """ SELECT stationname, latitude, longitude FROM cdc_stations WHERE latitude IS NOT NULL AND longitude IS NOT NULL """ t0 = time.time() rows = spark.sql(q).collect() t1 = time.time() print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Rows: {len(rows)}") lats = [r['latitude'] for r in rows] lons = [r['longitude'] for r in rows] names = [r['stationname'] for r in rows] plt.figure(figsize=(8,6)) plt.scatter(lons, lats, s=10, alpha=0.6) plt.xlabel('Longitude') plt.ylabel('Latitude') plt.title('Alle CDC-Stationen (Scatter)') plt.grid(True) plt.show() # b) Scatterplot: Stationsdauer in Jahren als Marker-Size def plot_station_duration(spark, size_factor=20): q = """ SELECT stationname, latitude, longitude, (CAST(CASE WHEN length(to_date) >= 4 THEN substr(to_date,1,4) ELSE year(current_date()) END AS INT) - CAST(substr(from_date,1,4) AS INT)) AS years FROM cdc_stations WHERE latitude IS NOT NULL AND longitude IS NOT NULL """ t0 = time.time() rows = spark.sql(q).collect() t1 = time.time() print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Rows: {len(rows)}") lats = [r['latitude'] for r in rows] lons = [r['longitude'] for r in rows] years = [r['years'] if r['years'] is not None else 0 for r in rows] sizes = [max(5, (y+1) * size_factor) for y in years] plt.figure(figsize=(8,6)) plt.scatter(lons, lats, s=sizes, alpha=0.6) plt.xlabel('Longitude') plt.ylabel('Latitude') plt.title('CDC-Stationen: Dauer der Verfuegbarkeit (Größe ~ Jahre)') plt.grid(True) plt.show() def plot_frost_distribution_year(spark, year): q = f""" WITH daily_max AS ( SELECT stationid, date, MAX(tt_tu) AS max_temp FROM cdc_hourly WHERE length(date) >= 8 AND substr(date,1,4) = '{year}' GROUP BY stationid, date ), station_frost AS ( SELECT dm.stationid, SUM(CASE WHEN dm.max_temp < 0 THEN 1 ELSE 0 END) AS frostdays FROM daily_max dm GROUP BY dm.stationid ) SELECT sf.frostdays, COUNT(*) AS stations FROM station_frost sf GROUP BY sf.frostdays ORDER BY sf.frostdays """ t0 = time.time() rows = spark.sql(q).collect() t1 = time.time() print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Distinct frostdays: {len(rows)}") x = [r['frostdays'] for r in rows] y = [r['stations'] for r in rows] plt.figure(figsize=(8,5)) plt.bar(x, y) plt.xlabel('Anzahl Frosttage im Jahr ' + str(year)) plt.ylabel('Anzahl Stationen') plt.title(f'Verteilung der Frosttage pro Station im Jahr {year}') plt.grid(True) plt.show() # c2) Frosttage Zeitreihe für eine Station mit 5- und 20-Jahres Durchschnitt (SQL window) def plot_station_frost_timeseries(spark, station_name): q = f""" WITH daily_max AS ( SELECT stationid, date, MAX(tt_tu) AS max_temp FROM cdc_hourly GROUP BY stationid, date ), yearly AS ( SELECT dm.stationid, CAST(substr(dm.date,1,4) AS INT) AS year, SUM(CASE WHEN dm.max_temp < 0 THEN 1 ELSE 0 END) AS frostdays FROM daily_max dm GROUP BY dm.stationid, CAST(substr(dm.date,1,4) AS INT) ), station_yearly AS ( SELECT y.year, y.frostdays, AVG(y.frostdays) OVER (ORDER BY y.year ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg5, AVG(y.frostdays) OVER (ORDER BY y.year ROWS BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg20 FROM yearly y JOIN cdc_stations s ON y.stationid = s.stationid WHERE trim(upper(s.stationname)) = '{station_name.upper()}' ORDER BY y.year ) SELECT * FROM station_yearly """ t0 = time.time() rows = spark.sql(q).collect() t1 = time.time() print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Years: {len(rows)}") if not rows: print(f"Keine Daten f\u00fcr Station '{station_name}'.") return years = [r['year'] for r in rows] frostdays = [r['frostdays'] for r in rows] avg5 = [r['avg5'] for r in rows] avg20 = [r['avg20'] for r in rows] plt.figure(figsize=(10,5)) plt.plot(years, frostdays, label='Frosttage (Jahr)') plt.plot(years, avg5, label='5-Jahres-Durchschnitt') plt.plot(years, avg20, label='20-Jahres-Durchschnitt') plt.xlabel('Jahr') plt.ylabel('Anzahl Frosttage') plt.title(f'Frosttage f\u00fcr Station {station_name}') plt.legend() plt.grid(True) plt.show() # d) Korrelation Hoehe vs. Frosttage pro Jahr def plot_height_frost_correlation(spark): q = """ WITH daily_max AS ( SELECT stationid, date, MAX(tt_tu) AS max_temp FROM cdc_hourly GROUP BY stationid, date ), yearly AS ( SELECT dm.stationid, CAST(substr(dm.date,1,4) AS INT) AS year, SUM(CASE WHEN dm.max_temp < 0 THEN 1 ELSE 0 END) AS frostdays FROM daily_max dm GROUP BY dm.stationid, CAST(substr(dm.date,1,4) AS INT) ), joined AS ( SELECT y.year, s.height, y.frostdays FROM yearly y JOIN cdc_stations s ON y.stationid = s.stationid ), yearly_corr AS ( SELECT year, corr(height, frostdays) AS corr FROM joined GROUP BY year ORDER BY year ) SELECT year, corr FROM yearly_corr WHERE corr IS NOT NULL """ t0 = time.time() rows = spark.sql(q).collect() t1 = time.time() print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Years with corr: {len(rows)}") if not rows: print("Keine Korrelationsdaten verfügbar.") return years = [r['year'] for r in rows] corr = [r['corr'] for r in rows] plt.figure(figsize=(10,5)) plt.bar(years, corr) plt.xlabel('Jahr') plt.ylabel('Korrelationskoeffizient (height vs frostdays)') plt.title('Korrelation Hoehe vs. Frosttage pro Jahr') plt.grid(True) plt.show() if __name__ == '__main__': ghcnd_stations.read_ghcnd_from_parquet(spark) plot_all_stations(spark) plot_station_duration(spark) plot_frost_distribution_year(spark, '2010') plot_station_frost_timeseries(spark, 'KEMPTEN') plot_height_frost_correlation(spark) pass