Files
BigData/Aufgabe 9/Aufgabe9.py
2025-11-28 13:23:06 +01:00

145 lines
4.1 KiB
Python

from sparkstart import scon, spark
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType, FloatType
from pyspark.sql import Row
import pyspark.sql.functions as F
import re
CDC_PATH = "/data/cdc/hourly/"
HDFS_HOME = "hdfs://193.174.205.250:54310/"
# a) Stationsdaten einlesen & als Parquet speichern
def a(scon, spark, path=CDC_PATH):
stationlines = scon.textFile(path + "TU_Stundenwerte_Beschreibung_Stationen.txt")
stationlines = stationlines.zipWithIndex().filter(lambda x: x[1] >= 2).map(lambda x: x[0])
stationsplitlines = stationlines.map(lambda l: (
l[0:5].strip(),
l[6:14].strip(),
l[15:23].strip(),
int(l[24:41].strip()),
float(l[42:52].strip()),
float(l[53:61].strip()),
l[61:101].strip(),
l[102:].strip()
))
stationschema = StructType([
StructField('stationid', StringType(), True),
StructField('from_date', StringType(), True),
StructField('to_date', StringType(), True),
StructField('height', IntegerType(), True),
StructField('latitude', FloatType(), True),
StructField('longitude', FloatType(), True),
StructField('stationname', StringType(), True),
StructField('state', StringType(), True)
])
stationframe = spark.createDataFrame(stationsplitlines, schema=stationschema)
stationframe.createOrReplaceTempView("cdc_stations")
outfile = HDFS_HOME + "/home/kramlingermike/" + "cdc_stations.parquet"
stationframe.write.mode('overwrite').parquet(outfile)
stationframe.cache()
# a) Beispielabfrage
def get_all_cdc_stations(spark):
result = spark.sql(f"""
SELECT *
FROM cdc_stations
ORDER BY stationname
""")
result.show(truncate=False)
# a) Beispielabfrage
def get_cdc_stations_per_state(spark):
result = spark.sql(f"""
SELECT
state,
COUNT(*) AS count
FROM cdc_stations
GROUP BY state
ORDER BY count DESC
""")
result.show(truncate=False)
def b(scon, spark):
lines = scon.textFile(CDC_PATH + "produkt*")
lines = lines.filter(lambda line: not line.startswith("STATIONS_ID"))
lines = lines.zipWithIndex().filter(lambda x: x[1] >= 0).map(lambda x: x[0])
lines = lines.map(lambda l: l.split(";"))
lines = lines.map(lambda s: (
s[0].strip(),
s[1].strip()[:8],
int(s[1].strip()[8:]),
int(s[2].strip()),
float(s[3].strip()),
float(s[4].strip())
))
schema = StructType([
StructField("stationid", StringType(), True),
StructField("date", StringType(), True),
StructField("hour", IntegerType(), True),
StructField("qn_9", IntegerType(), True),
StructField("tt_tu", FloatType(), True),
StructField("rf_tu", FloatType(), True)
])
df = spark.createDataFrame(lines, schema)
df.createOrReplaceTempView("cdc_hourly")
outfile = HDFS_HOME + "home/kramlingermike/" + "cdc_hourly.parquet"
df.write.mode("overwrite").parquet(outfile)
def get_hourly_station(spark, stationid, limit=20):
result = spark.sql(f"""
SELECT *
FROM cdc_hourly
WHERE stationid = '{stationid}'
ORDER BY date, hour
LIMIT {limit}
""")
result.show(truncate=False)
def avg_temp_per_day(spark, stationid, limit=20):
result = spark.sql(f"""
SELECT date, ROUND(AVG(tt_tu),2) AS avg_temp
FROM cdc_hourly
WHERE stationid = '{stationid}'
GROUP BY date
ORDER BY date
LIMIT {limit}
""")
result.show(truncate=False)
def main(scon, spark):
"""
main(scon, spark)
"""
print("a)")
a(scon, spark)
print("Beispielabfrage: (Alle Stationen:)")
get_all_cdc_stations(spark)
print("Beispielabfrage: (Alle Stationen pro Bundesland)")
get_cdc_stations_per_state(spark)
print("b)")
b(scon, spark)
print("Beispielabfrage: (Alle Daten für eine Station:)")
get_hourly_station(spark, "4271")
print("Beispielabfrage: (Durchschnittliche Temperatur pro Tag für eine Station:)")
avg_temp_per_day(spark, "4271")
if __name__ == "__main__":
main(scon, spark)