mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-11 09:59:33 +01:00
145 lines
4.1 KiB
Python
145 lines
4.1 KiB
Python
from sparkstart import scon, spark
|
|
|
|
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType, FloatType
|
|
from pyspark.sql import Row
|
|
import pyspark.sql.functions as F
|
|
import re
|
|
|
|
CDC_PATH = "/data/cdc/hourly/"
|
|
HDFS_HOME = "hdfs://193.174.205.250:54310/"
|
|
|
|
|
|
# a) Stationsdaten einlesen & als Parquet speichern
|
|
def a(scon, spark, path=CDC_PATH):
|
|
stationlines = scon.textFile(path + "TU_Stundenwerte_Beschreibung_Stationen.txt")
|
|
|
|
stationlines = stationlines.zipWithIndex().filter(lambda x: x[1] >= 2).map(lambda x: x[0])
|
|
|
|
stationsplitlines = stationlines.map(lambda l: (
|
|
l[0:5].strip(),
|
|
l[6:14].strip(),
|
|
l[15:23].strip(),
|
|
int(l[24:41].strip()),
|
|
float(l[42:52].strip()),
|
|
float(l[53:61].strip()),
|
|
l[61:101].strip(),
|
|
l[102:].strip()
|
|
))
|
|
|
|
stationschema = StructType([
|
|
StructField('stationid', StringType(), True),
|
|
StructField('from_date', StringType(), True),
|
|
StructField('to_date', StringType(), True),
|
|
StructField('height', IntegerType(), True),
|
|
StructField('latitude', FloatType(), True),
|
|
StructField('longitude', FloatType(), True),
|
|
StructField('stationname', StringType(), True),
|
|
StructField('state', StringType(), True)
|
|
])
|
|
|
|
stationframe = spark.createDataFrame(stationsplitlines, schema=stationschema)
|
|
|
|
stationframe.createOrReplaceTempView("cdc_stations")
|
|
|
|
outfile = HDFS_HOME + "/home/kramlingermike/" + "cdc_stations.parquet"
|
|
stationframe.write.mode('overwrite').parquet(outfile)
|
|
stationframe.cache()
|
|
|
|
# a) Beispielabfrage
|
|
def get_all_cdc_stations(spark):
|
|
result = spark.sql(f"""
|
|
SELECT *
|
|
FROM cdc_stations
|
|
ORDER BY stationname
|
|
""")
|
|
result.show(truncate=False)
|
|
|
|
# a) Beispielabfrage
|
|
def get_cdc_stations_per_state(spark):
|
|
result = spark.sql(f"""
|
|
SELECT
|
|
state,
|
|
COUNT(*) AS count
|
|
FROM cdc_stations
|
|
GROUP BY state
|
|
ORDER BY count DESC
|
|
""")
|
|
result.show(truncate=False)
|
|
|
|
def b(scon, spark):
|
|
lines = scon.textFile(CDC_PATH + "produkt*")
|
|
|
|
lines = lines.filter(lambda line: not line.startswith("STATIONS_ID"))
|
|
lines = lines.zipWithIndex().filter(lambda x: x[1] >= 0).map(lambda x: x[0])
|
|
|
|
lines = lines.map(lambda l: l.split(";"))
|
|
|
|
lines = lines.map(lambda s: (
|
|
s[0].strip(),
|
|
s[1].strip()[:8],
|
|
int(s[1].strip()[8:]),
|
|
int(s[2].strip()),
|
|
float(s[3].strip()),
|
|
float(s[4].strip())
|
|
))
|
|
|
|
schema = StructType([
|
|
StructField("stationid", StringType(), True),
|
|
StructField("date", StringType(), True),
|
|
StructField("hour", IntegerType(), True),
|
|
StructField("qn_9", IntegerType(), True),
|
|
StructField("tt_tu", FloatType(), True),
|
|
StructField("rf_tu", FloatType(), True)
|
|
])
|
|
|
|
|
|
df = spark.createDataFrame(lines, schema)
|
|
|
|
df.createOrReplaceTempView("cdc_hourly")
|
|
|
|
outfile = HDFS_HOME + "home/kramlingermike/" + "cdc_hourly.parquet"
|
|
df.write.mode("overwrite").parquet(outfile)
|
|
|
|
def get_hourly_station(spark, stationid, limit=20):
|
|
result = spark.sql(f"""
|
|
SELECT *
|
|
FROM cdc_hourly
|
|
WHERE stationid = '{stationid}'
|
|
ORDER BY date, hour
|
|
LIMIT {limit}
|
|
""")
|
|
result.show(truncate=False)
|
|
|
|
def avg_temp_per_day(spark, stationid, limit=20):
|
|
result = spark.sql(f"""
|
|
SELECT date, ROUND(AVG(tt_tu),2) AS avg_temp
|
|
FROM cdc_hourly
|
|
WHERE stationid = '{stationid}'
|
|
GROUP BY date
|
|
ORDER BY date
|
|
LIMIT {limit}
|
|
""")
|
|
result.show(truncate=False)
|
|
|
|
|
|
def main(scon, spark):
|
|
"""
|
|
main(scon, spark)
|
|
"""
|
|
|
|
print("a)")
|
|
a(scon, spark)
|
|
print("Beispielabfrage: (Alle Stationen:)")
|
|
get_all_cdc_stations(spark)
|
|
print("Beispielabfrage: (Alle Stationen pro Bundesland)")
|
|
get_cdc_stations_per_state(spark)
|
|
print("b)")
|
|
b(scon, spark)
|
|
print("Beispielabfrage: (Alle Daten für eine Station:)")
|
|
get_hourly_station(spark, "4271")
|
|
print("Beispielabfrage: (Durchschnittliche Temperatur pro Tag für eine Station:)")
|
|
avg_temp_per_day(spark, "4271")
|
|
|
|
if __name__ == "__main__":
|
|
main(scon, spark)
|