mirror of
https://github.com/Vale54321/BigData.git
synced 2026-02-04 00:35:55 +01:00
190 lines
5.5 KiB
Python
190 lines
5.5 KiB
Python
from sparkstart import spark
|
|
from sparkstart import scon, spark
|
|
from pyspark.sql import SparkSession
|
|
|
|
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
|
SOURCEPATH = HDFSPATH + "stocks/"
|
|
|
|
def read_data(spark: SparkSession) -> None:
|
|
"""
|
|
Loads the existing Parquet files from HDFS into Spark Views.
|
|
"""
|
|
print(f"--- Loading Views from {SOURCEPATH} ---")
|
|
try:
|
|
# Load Stocks
|
|
spark.read.parquet(SOURCEPATH + "stocks.parquet").createOrReplaceTempView("stocks")
|
|
print("-> View 'stocks' loaded.")
|
|
|
|
# Load Portfolio
|
|
spark.read.parquet(SOURCEPATH + "portfolio.parquet").createOrReplaceTempView("portfolio")
|
|
print("-> View 'portfolio' loaded.")
|
|
|
|
except Exception as e:
|
|
print(f"CRITICAL ERROR: Could not load data. {e}")
|
|
print("Please check if the path exists in HDFS.")
|
|
|
|
# --- Aufgabe A ---
|
|
def first_last_quotation(spark: SparkSession, num: int = 10) -> None:
|
|
print("\n--- Aufgabe A: First/Last Quotation ---")
|
|
query = """
|
|
SELECT symbol,
|
|
MIN(dt) AS altNotierung,
|
|
MAX(dt) AS neuNotierung
|
|
FROM stocks
|
|
GROUP BY symbol
|
|
ORDER BY symbol
|
|
"""
|
|
|
|
df_quotation = spark.sql(query)
|
|
df_quotation.show(num, truncate=False)
|
|
|
|
df_quotation.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse1.parquet")
|
|
print("-> Imported nyse1")
|
|
|
|
|
|
# --- Aufgabe B ---
|
|
def min_max_avg_close(spark: SparkSession, num: int = 10) -> None:
|
|
print("\n--- Aufgabe B: Min/Max/Avg Close 2009 ---")
|
|
query = """
|
|
SELECT symbol,
|
|
MIN(close) AS minClose,
|
|
MAX(close) AS maxClose,
|
|
AVG(close) AS avgClose
|
|
FROM stocks
|
|
WHERE YEAR(dt) = 2009
|
|
GROUP BY symbol
|
|
ORDER BY symbol
|
|
"""
|
|
|
|
df_close = spark.sql(query)
|
|
df_close.show(num, truncate=False)
|
|
|
|
df_close.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse2.parquet")
|
|
print("-> Imported nyse2")
|
|
|
|
|
|
# --- Aufgabe C ---
|
|
def sum_count_avg_portfolios(spark: SparkSession, num: int = 10) -> None:
|
|
print("\n--- Aufgabe C: Portfolio Aggregations ---")
|
|
# 1. Explode
|
|
query_explode = """
|
|
SELECT pid, Attr
|
|
FROM portfolio
|
|
LATERAL VIEW EXPLODE(bonds) AS Attr
|
|
"""
|
|
df_temp = spark.sql(query_explode)
|
|
df_temp.createOrReplaceTempView("temp")
|
|
|
|
# 2. Aggregate
|
|
query_agg = """
|
|
SELECT Attr.symbol AS symbol,
|
|
COUNT(pid) AS anzpid,
|
|
SUM(Attr.num) AS anzAktien,
|
|
AVG(Attr.num) AS avgAnzAktien
|
|
FROM temp
|
|
GROUP BY symbol
|
|
ORDER BY symbol
|
|
"""
|
|
|
|
df_sum_sel_cnt_avg = spark.sql(query_agg)
|
|
df_sum_sel_cnt_avg.show(num, truncate=False)
|
|
|
|
df_sum_sel_cnt_avg.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse3.parquet")
|
|
print("-> Imported nyse3")
|
|
|
|
|
|
# --- Aufgabe D ---
|
|
def symbols_not_in_portfolio(spark: SparkSession, num: int = 10) -> None:
|
|
print("\n--- Aufgabe D: Symbols not in Portfolio ---")
|
|
query_explode = """
|
|
SELECT Attr
|
|
FROM portfolio
|
|
LATERAL VIEW EXPLODE(bonds) AS Attr
|
|
"""
|
|
|
|
df_temp = spark.sql(query_explode)
|
|
df_temp.createOrReplaceTempView("tempport")
|
|
|
|
query_distinct = """
|
|
SELECT DISTINCT s.symbol
|
|
FROM stocks s
|
|
LEFT OUTER JOIN tempport p ON s.symbol = p.Attr.symbol
|
|
WHERE p.Attr.symbol IS NULL
|
|
ORDER BY s.symbol
|
|
"""
|
|
|
|
df_symbols = spark.sql(query_distinct)
|
|
df_symbols.show(num, truncate=False)
|
|
|
|
df_symbols.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse4.parquet")
|
|
print("-> Imported nyse4")
|
|
|
|
|
|
# --- Aufgabe E ---
|
|
def value_portfolio_2010(spark: SparkSession, num: int = 10) -> None:
|
|
print("\n--- Aufgabe E: Portfolio Value 2010 ---")
|
|
|
|
# 1. Portfolio explodieren
|
|
query_portfolio = """
|
|
SELECT pid, Attr.symbol AS symbol, Attr.num AS anzAktien
|
|
FROM portfolio
|
|
LATERAL VIEW EXPLODE(bonds) AS Attr
|
|
ORDER BY pid
|
|
"""
|
|
df_lview = spark.sql(query_portfolio)
|
|
df_lview.createOrReplaceTempView("tempportfolio")
|
|
# df_lview.show(num, truncate=False) # Optional zur Kontrolle
|
|
|
|
# 2. Stocks filtern (Neuester Kurs in 2010)
|
|
query_stocks = """
|
|
SELECT s.symbol, s.dt, s.close
|
|
FROM stocks s
|
|
INNER JOIN (
|
|
SELECT symbol, MAX(dt) AS datum
|
|
FROM stocks
|
|
GROUP BY symbol
|
|
) AS grpStocks
|
|
ON s.symbol = grpStocks.symbol AND s.dt = grpStocks.datum
|
|
WHERE YEAR(dt) = 2010
|
|
ORDER BY datum
|
|
"""
|
|
df_2010 = spark.sql(query_stocks)
|
|
df_2010.createOrReplaceTempView("tempstocks")
|
|
# df_2010.show(num, truncate=False) # Optional zur Kontrolle
|
|
|
|
# 3. Wert berechnen (Join)
|
|
query_value = """
|
|
SELECT p.*, s.close * p.anzAktien AS wert
|
|
FROM tempportfolio p, tempstocks s
|
|
WHERE s.symbol = p.symbol
|
|
ORDER BY p.pid
|
|
"""
|
|
df_value = spark.sql(query_value)
|
|
df_value.createOrReplaceTempView("tempvalue")
|
|
# df_value.show(num, truncate=False) # Optional zur Kontrolle
|
|
|
|
# 4. Gesamtwert aggregieren
|
|
query_sum = """
|
|
SELECT pid, SUM(wert) AS gesamtwert
|
|
FROM tempvalue
|
|
GROUP BY pid
|
|
ORDER BY pid
|
|
"""
|
|
df_sum = spark.sql(query_sum)
|
|
df_sum.show(num, truncate=False)
|
|
|
|
df_sum.write.mode('overwrite').parquet(HDFSPATH + "home/heiserervalentin/nyse5.parquet")
|
|
print("-> Imported nyse5")
|
|
|
|
|
|
def main(scon, spark):
|
|
read_data(spark)
|
|
|
|
first_last_quotation(spark, 10)
|
|
min_max_avg_close(spark, 10)
|
|
sum_count_avg_portfolios(spark, 5)
|
|
symbols_not_in_portfolio(spark, 5)
|
|
value_portfolio_2010(spark, 10)
|
|
|
|
if __name__ == "__main__":
|
|
main(scon, spark) |