Files
BigData/Aufgabe 10/Aufgabe10.py
2025-11-28 14:43:37 +01:00

187 lines
5.7 KiB
Python

from sparkstart import scon, spark
from pyspark.sql import SparkSession
import time
import matplotlib.pyplot as plt
HDFSPATH = "hdfs://193.174.205.250:54310/"
def read_parquets(spark: SparkSession):
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
stations_df = spark.read.parquet(stations_path)
stations_df.createOrReplaceTempView("german_stations")
products_df = spark.read.parquet(products_path)
products_df.createOrReplaceTempView("german_stations_data")
stations_df.cache()
products_df.cache()
def plot_all_stations(spark: SparkSession):
q = "SELECT geo_laenge AS lon, geo_breite AS lat FROM german_stations WHERE geo_laenge IS NOT NULL AND geo_breite IS NOT NULL"
df = spark.sql(q)
pdf = df.toPandas()
plt.figure(figsize=(8, 6))
plt.scatter(pdf.lon, pdf.lat, s=6, color='red', marker='.')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('All Stations (locations)')
plt.tight_layout()
plt.show()
def duration_circle_size(spark: SparkSession):
q = (
"SELECT stationId, geo_laenge AS lon, geo_breite AS lat, "
"(CAST(SUBSTR(bis_datum,1,4) AS INT) - CAST(SUBSTR(von_datum,1,4) AS INT)) AS duration_years "
"FROM german_stations "
"WHERE TRIM(von_datum)<>'' AND TRIM(bis_datum)<>''"
)
df = spark.sql(q)
pdf = df.toPandas()
pdf['duration_years'] = pdf['duration_years'].fillna(0).astype(int)
sizes = (pdf['duration_years'].clip(lower=0) + 1) * 6
plt.figure(figsize=(8, 6))
plt.scatter(pdf.lon, pdf.lat, s=sizes, alpha=0.6, c=pdf['duration_years'], cmap='viridis')
plt.colorbar(label='Duration (years)')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Stations with duration (years) as marker size')
plt.tight_layout()
plt.show()
def compute_daily_and_yearly_frosts(spark: SparkSession):
q_daily_max = (
"SELECT stationId, date, SUBSTR(date,1,4) AS year, MAX(TT_TU) AS max_temp "
"FROM german_stations_data "
"GROUP BY stationId, date"
)
daily_max = spark.sql(q_daily_max)
daily_max.createOrReplaceTempView('daily_max')
# mark a day as frost if max_temp < 0
q_daily_frost = (
"SELECT stationId, year, CASE WHEN max_temp < 0 THEN 1 ELSE 0 END AS is_frost "
"FROM daily_max"
)
daily_frost = spark.sql(q_daily_frost)
daily_frost.createOrReplaceTempView('daily_frost')
# yearly frostdays per station
q_station_year = (
"SELECT stationId, year, SUM(is_frost) AS frost_days "
"FROM daily_frost GROUP BY stationId, year"
)
station_year_frost = spark.sql(q_station_year)
station_year_frost.createOrReplaceTempView('station_year_frost')
def frost_analysis(spark: SparkSession, year=2024, station_name_matches=('kempten',)):
compute_daily_and_yearly_frosts(spark)
q_hist = (
f"SELECT frost_days, COUNT(*) AS station_count "
f"FROM station_year_frost WHERE year = '{year}' GROUP BY frost_days ORDER BY frost_days"
)
hist_df = spark.sql(q_hist)
hist_pdf = hist_df.toPandas()
plt.figure(figsize=(8, 5))
plt.bar(hist_pdf.frost_days, hist_pdf.station_count, color='steelblue')
plt.xlabel('Number of Frost Days in year ' + str(year))
plt.ylabel('Number of Stations')
plt.title(f'Stations vs Frost Days ({year})')
plt.tight_layout()
plt.show()
for name in station_name_matches:
q_find = f"SELECT stationId, station_name FROM german_stations WHERE lower(station_name) LIKE '%{name.lower()}%'"
ids_df = spark.sql(q_find)
ids = ids_df.collect()
if not ids:
print(f"No stations found matching '{name}'")
continue
for r in ids:
sid = r['stationId']
sname = r['station_name']
print(f"Analyzing stationId={sid} name={sname}")
# compute frostdays + 5-yr and 20-yr rolling averages using window frame
q_ts = (
"SELECT year, frost_days, "
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg_5, "
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) ROWS BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg_20 "
f"FROM station_year_frost WHERE stationId = {sid} ORDER BY CAST(year AS INT)"
)
ts_df = spark.sql(q_ts)
pdf = ts_df.toPandas()
if pdf.empty:
print(f"No yearly frost data for station {sid}")
continue
pdf['year'] = pdf['year'].astype(int)
plt.figure(figsize=(10, 5))
plt.plot(pdf.year, pdf.frost_days, label='Frostdays (year)', marker='o')
plt.plot(pdf.year, pdf.avg_5, label='5-year avg', linestyle='--')
plt.plot(pdf.year, pdf.avg_20, label='20-year avg', linestyle=':')
plt.xlabel('Year')
plt.ylabel('Frost Days')
plt.title(f'Frost Days over Years for {sname} (station {sid})')
plt.legend()
plt.tight_layout()
plt.show()
def height_frost_correlation(spark: SparkSession):
compute_daily_and_yearly_frosts(spark)
q_corr = (
"SELECT syf.year AS year, corr(s.hoehe, syf.frost_days) AS height_frost_corr "
"FROM station_year_frost syf JOIN german_stations s ON syf.stationId = s.stationId "
"GROUP BY syf.year ORDER BY CAST(syf.year AS INT)"
)
corr_df = spark.sql(q_corr)
corr_pdf = corr_df.toPandas()
corr_pdf = corr_pdf.dropna(subset=['height_frost_corr'])
if corr_pdf.empty:
print("No non-NaN correlation values found.")
return
corr_pdf['year'] = corr_pdf['year'].astype(int)
plt.figure(figsize=(10, 5))
plt.bar(corr_pdf.year, corr_pdf.height_frost_corr, color='orange')
plt.xlabel('Year')
plt.ylabel('Correlation (height vs frostdays)')
plt.title('Yearly correlation: station height vs number of frost days')
plt.tight_layout()
plt.show()
def main(scon, spark):
read_parquets(spark)
plot_all_stations(spark)
duration_circle_size(spark)
frost_analysis(spark, year=2024, station_name_matches=('kempten',))
height_frost_correlation(spark)
if __name__ == '__main__':
main(scon, spark)