mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-13 02:49:32 +01:00
202 lines
6.4 KiB
Python
202 lines
6.4 KiB
Python
from sparkstart import scon, spark
|
|
from pyspark.sql import SparkSession
|
|
import time
|
|
import matplotlib.pyplot as plt
|
|
|
|
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
|
|
|
|
|
def read_parquets(spark: SparkSession):
|
|
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
|
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
|
|
|
stations_df = spark.read.parquet(stations_path)
|
|
stations_df.createOrReplaceTempView("german_stations")
|
|
|
|
products_df = spark.read.parquet(products_path)
|
|
products_df.createOrReplaceTempView("german_stations_data")
|
|
|
|
stations_df.cache()
|
|
products_df.cache()
|
|
|
|
|
|
def plot_all_stations(spark: SparkSession):
|
|
q = "SELECT geo_laenge AS lon, geo_breite AS lat FROM german_stations WHERE geo_laenge IS NOT NULL AND geo_breite IS NOT NULL"
|
|
df = spark.sql(q)
|
|
|
|
pdf = df.toPandas()
|
|
plt.figure(figsize=(8, 6))
|
|
plt.scatter(pdf.lon, pdf.lat, s=6, color='red', marker='.')
|
|
plt.xlabel('Longitude')
|
|
plt.ylabel('Latitude')
|
|
plt.title('All Stations (locations)')
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def duration_circle_size(spark: SparkSession):
|
|
q = (
|
|
"SELECT stationId, geo_laenge AS lon, geo_breite AS lat, "
|
|
"(CAST(SUBSTR(bis_datum,1,4) AS INT) - CAST(SUBSTR(von_datum,1,4) AS INT)) AS duration_years "
|
|
"FROM german_stations "
|
|
"WHERE TRIM(von_datum)<>'' AND TRIM(bis_datum)<>''"
|
|
)
|
|
df = spark.sql(q)
|
|
|
|
pdf = df.toPandas()
|
|
|
|
pdf['duration_years'] = pdf['duration_years'].fillna(0).astype(int)
|
|
sizes = (pdf['duration_years'].clip(lower=0) + 1) * 6
|
|
|
|
plt.figure(figsize=(8, 6))
|
|
plt.scatter(pdf.lon, pdf.lat, s=sizes, alpha=0.6, c=pdf['duration_years'], cmap='viridis')
|
|
plt.colorbar(label='Duration (years)')
|
|
plt.xlabel('Longitude')
|
|
plt.ylabel('Latitude')
|
|
plt.title('Stations with duration (years) as marker size')
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def compute_daily_and_yearly_frosts(spark: SparkSession):
|
|
q_daily_max = (
|
|
"SELECT stationId, date, SUBSTR(CAST(date AS STRING),1,4) AS year, MAX(TT_TU) AS max_temp "
|
|
"FROM german_stations_data "
|
|
"WHERE TT_TU IS NOT NULL "
|
|
"GROUP BY stationId, date"
|
|
)
|
|
daily_max = spark.sql(q_daily_max)
|
|
daily_max.createOrReplaceTempView('daily_max')
|
|
|
|
# mark a day as frost if max_temp < 0
|
|
q_daily_frost = (
|
|
"SELECT stationId, year, CASE WHEN max_temp < 0 THEN 1 ELSE 0 END AS is_frost "
|
|
"FROM daily_max"
|
|
)
|
|
daily_frost = spark.sql(q_daily_frost)
|
|
daily_frost.createOrReplaceTempView('daily_frost')
|
|
|
|
# yearly frostdays per station
|
|
q_station_year = (
|
|
"SELECT stationId, year, SUM(is_frost) AS frost_days "
|
|
"FROM daily_frost GROUP BY stationId, year"
|
|
)
|
|
station_year_frost = spark.sql(q_station_year)
|
|
station_year_frost.createOrReplaceTempView('station_year_frost')
|
|
|
|
|
|
def frost_analysis(spark: SparkSession, year=2024, station_name_matches=('kempten',)):
|
|
compute_daily_and_yearly_frosts(spark)
|
|
|
|
# Debug: check available years and data
|
|
spark.sql("SELECT year, COUNT(*) as cnt FROM station_year_frost GROUP BY year ORDER BY year").show(50)
|
|
|
|
q_hist = (
|
|
f"SELECT frost_days, COUNT(*) AS station_count "
|
|
f"FROM station_year_frost WHERE year = '{year}' GROUP BY frost_days ORDER BY frost_days"
|
|
)
|
|
hist_df = spark.sql(q_hist)
|
|
|
|
hist_pdf = hist_df.toPandas()
|
|
|
|
if hist_pdf.empty:
|
|
print(f"No frost data found for year {year}. Trying to find available years...")
|
|
# Try without year filter to see if data exists
|
|
q_all = "SELECT frost_days, COUNT(*) AS station_count FROM station_year_frost GROUP BY frost_days ORDER BY frost_days"
|
|
hist_pdf = spark.sql(q_all).toPandas()
|
|
if hist_pdf.empty:
|
|
print("No frost data available at all. Check if TT_TU column contains valid temperature data.")
|
|
return
|
|
print(f"Found {len(hist_pdf)} frost day categories across all years")
|
|
|
|
plt.figure(figsize=(8, 5))
|
|
plt.bar(hist_pdf.frost_days, hist_pdf.station_count, color='steelblue')
|
|
plt.xlabel('Number of Frost Days in year ' + str(year))
|
|
plt.ylabel('Number of Stations')
|
|
plt.title(f'Stations vs Frost Days ({year})')
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
for name in station_name_matches:
|
|
q_find = f"SELECT stationId, station_name FROM german_stations WHERE lower(station_name) LIKE '%{name.lower()}%'"
|
|
ids_df = spark.sql(q_find)
|
|
ids = ids_df.collect()
|
|
if not ids:
|
|
print(f"No stations found matching '{name}'")
|
|
continue
|
|
for r in ids:
|
|
sid = r['stationId']
|
|
sname = r['station_name']
|
|
print(f"Analyzing stationId={sid} name={sname}")
|
|
|
|
# compute frostdays + 5-yr and 20-yr rolling averages using window frame
|
|
q_ts = (
|
|
"SELECT year, frost_days, "
|
|
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg_5, "
|
|
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) ROWS BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg_20 "
|
|
f"FROM station_year_frost WHERE stationId = {sid} ORDER BY CAST(year AS INT)"
|
|
)
|
|
ts_df = spark.sql(q_ts)
|
|
|
|
pdf = ts_df.toPandas()
|
|
if pdf.empty:
|
|
print(f"No yearly frost data for station {sid}")
|
|
continue
|
|
|
|
pdf['year'] = pdf['year'].astype(int)
|
|
plt.figure(figsize=(10, 5))
|
|
plt.plot(pdf.year, pdf.frost_days, label='Frostdays (year)', marker='o')
|
|
plt.plot(pdf.year, pdf.avg_5, label='5-year avg', linestyle='--')
|
|
plt.plot(pdf.year, pdf.avg_20, label='20-year avg', linestyle=':')
|
|
plt.xlabel('Year')
|
|
plt.ylabel('Frost Days')
|
|
plt.title(f'Frost Days over Years for {sname} (station {sid})')
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def height_frost_correlation(spark: SparkSession):
|
|
compute_daily_and_yearly_frosts(spark)
|
|
|
|
q_corr = (
|
|
"SELECT syf.year AS year, corr(s.hoehe, syf.frost_days) AS height_frost_corr "
|
|
"FROM station_year_frost syf JOIN german_stations s ON syf.stationId = s.stationId "
|
|
"GROUP BY syf.year ORDER BY CAST(syf.year AS INT)"
|
|
)
|
|
|
|
corr_df = spark.sql(q_corr)
|
|
|
|
corr_pdf = corr_df.toPandas()
|
|
|
|
corr_pdf = corr_pdf.dropna(subset=['height_frost_corr'])
|
|
if corr_pdf.empty:
|
|
print("No non-NaN correlation values found.")
|
|
return
|
|
|
|
corr_pdf['year'] = corr_pdf['year'].astype(int)
|
|
plt.figure(figsize=(10, 5))
|
|
plt.bar(corr_pdf.year, corr_pdf.height_frost_corr, color='orange')
|
|
plt.xlabel('Year')
|
|
plt.ylabel('Correlation (height vs frostdays)')
|
|
plt.title('Yearly correlation: station height vs number of frost days')
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def main(scon, spark):
|
|
read_parquets(spark)
|
|
|
|
plot_all_stations(spark)
|
|
|
|
duration_circle_size(spark)
|
|
|
|
frost_analysis(spark, year=2024, station_name_matches=('kempten',))
|
|
|
|
height_frost_correlation(spark)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(scon, spark)
|
|
|