mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-11 09:59:33 +01:00
add 9 + 10
This commit is contained in:
144
Aufgabe 9/Aufgabe9.py
Normal file
144
Aufgabe 9/Aufgabe9.py
Normal file
@@ -0,0 +1,144 @@
|
||||
from sparkstart import scon, spark
|
||||
|
||||
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType, FloatType
|
||||
from pyspark.sql import Row
|
||||
import pyspark.sql.functions as F
|
||||
import re
|
||||
|
||||
CDC_PATH = "/data/cdc/hourly/"
|
||||
HDFS_HOME = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
|
||||
# a) Stationsdaten einlesen & als Parquet speichern
|
||||
def a(scon, spark, path=CDC_PATH):
|
||||
stationlines = scon.textFile(path + "TU_Stundenwerte_Beschreibung_Stationen.txt")
|
||||
|
||||
stationlines = stationlines.zipWithIndex().filter(lambda x: x[1] >= 2).map(lambda x: x[0])
|
||||
|
||||
stationsplitlines = stationlines.map(lambda l: (
|
||||
l[0:5].strip(),
|
||||
l[6:14].strip(),
|
||||
l[15:23].strip(),
|
||||
int(l[24:41].strip()),
|
||||
float(l[42:52].strip()),
|
||||
float(l[53:61].strip()),
|
||||
l[61:101].strip(),
|
||||
l[102:].strip()
|
||||
))
|
||||
|
||||
stationschema = StructType([
|
||||
StructField('stationid', StringType(), True),
|
||||
StructField('from_date', StringType(), True),
|
||||
StructField('to_date', StringType(), True),
|
||||
StructField('height', IntegerType(), True),
|
||||
StructField('latitude', FloatType(), True),
|
||||
StructField('longitude', FloatType(), True),
|
||||
StructField('stationname', StringType(), True),
|
||||
StructField('state', StringType(), True)
|
||||
])
|
||||
|
||||
stationframe = spark.createDataFrame(stationsplitlines, schema=stationschema)
|
||||
|
||||
stationframe.createOrReplaceTempView("cdc_stations")
|
||||
|
||||
outfile = HDFS_HOME + "/home/kramlingermike/" + "cdc_stations.parquet"
|
||||
stationframe.write.mode('overwrite').parquet(outfile)
|
||||
stationframe.cache()
|
||||
|
||||
# a) Beispielabfrage
|
||||
def get_all_cdc_stations(spark):
|
||||
result = spark.sql(f"""
|
||||
SELECT *
|
||||
FROM cdc_stations
|
||||
ORDER BY stationname
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
# a) Beispielabfrage
|
||||
def get_cdc_stations_per_state(spark):
|
||||
result = spark.sql(f"""
|
||||
SELECT
|
||||
state,
|
||||
COUNT(*) AS count
|
||||
FROM cdc_stations
|
||||
GROUP BY state
|
||||
ORDER BY count DESC
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
def b(scon, spark):
|
||||
lines = scon.textFile(CDC_PATH + "produkt*")
|
||||
|
||||
lines = lines.filter(lambda line: not line.startswith("STATIONS_ID"))
|
||||
lines = lines.zipWithIndex().filter(lambda x: x[1] >= 0).map(lambda x: x[0])
|
||||
|
||||
lines = lines.map(lambda l: l.split(";"))
|
||||
|
||||
lines = lines.map(lambda s: (
|
||||
s[0].strip(),
|
||||
s[1].strip()[:8],
|
||||
int(s[1].strip()[8:]),
|
||||
int(s[2].strip()),
|
||||
float(s[3].strip()),
|
||||
float(s[4].strip())
|
||||
))
|
||||
|
||||
schema = StructType([
|
||||
StructField("stationid", StringType(), True),
|
||||
StructField("date", StringType(), True),
|
||||
StructField("hour", IntegerType(), True),
|
||||
StructField("qn_9", IntegerType(), True),
|
||||
StructField("tt_tu", FloatType(), True),
|
||||
StructField("rf_tu", FloatType(), True)
|
||||
])
|
||||
|
||||
|
||||
df = spark.createDataFrame(lines, schema)
|
||||
|
||||
df.createOrReplaceTempView("cdc_hourly")
|
||||
|
||||
outfile = HDFS_HOME + "home/kramlingermike/" + "cdc_hourly.parquet"
|
||||
df.write.mode("overwrite").parquet(outfile)
|
||||
|
||||
def get_hourly_station(spark, stationid, limit=20):
|
||||
result = spark.sql(f"""
|
||||
SELECT *
|
||||
FROM cdc_hourly
|
||||
WHERE stationid = '{stationid}'
|
||||
ORDER BY date, hour
|
||||
LIMIT {limit}
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
def avg_temp_per_day(spark, stationid, limit=20):
|
||||
result = spark.sql(f"""
|
||||
SELECT date, ROUND(AVG(tt_tu),2) AS avg_temp
|
||||
FROM cdc_hourly
|
||||
WHERE stationid = '{stationid}'
|
||||
GROUP BY date
|
||||
ORDER BY date
|
||||
LIMIT {limit}
|
||||
""")
|
||||
result.show(truncate=False)
|
||||
|
||||
|
||||
def main(scon, spark):
|
||||
"""
|
||||
main(scon, spark)
|
||||
"""
|
||||
|
||||
print("a)")
|
||||
a(scon, spark)
|
||||
print("Beispielabfrage: (Alle Stationen:)")
|
||||
get_all_cdc_stations(spark)
|
||||
print("Beispielabfrage: (Alle Stationen pro Bundesland)")
|
||||
get_cdc_stations_per_state(spark)
|
||||
print("b)")
|
||||
b(scon, spark)
|
||||
print("Beispielabfrage: (Alle Daten für eine Station:)")
|
||||
get_hourly_station(spark, "4271")
|
||||
print("Beispielabfrage: (Durchschnittliche Temperatur pro Tag für eine Station:)")
|
||||
avg_temp_per_day(spark, "4271")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
21
Aufgabe 9/sparkstart.py
Normal file
21
Aufgabe 9/sparkstart.py
Normal file
@@ -0,0 +1,21 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Erzeugen einer Spark-Konfiguration
|
||||
"""
|
||||
|
||||
from pyspark import SparkConf, SparkContext
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
# connect to cluster
|
||||
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
conf.set("spark.executor.memory", '32g')
|
||||
conf.set("spark.driver.memory", '8g')
|
||||
conf.set("spark.cores.max", "40")
|
||||
scon = SparkContext(conf=conf)
|
||||
|
||||
spark = SparkSession \
|
||||
.builder \
|
||||
.appName("Python Spark SQL") \
|
||||
.getOrCreate()
|
||||
Reference in New Issue
Block a user