mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-13 02:49:32 +01:00
12
This commit is contained in:
@@ -5,7 +5,6 @@ import matplotlib.pyplot as plt
|
||||
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
|
||||
def read_parquets(spark: SparkSession):
|
||||
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||
|
||||
@@ -1,366 +1,366 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from sparkstart import scon, spark
|
||||
from pyspark.sql import SparkSession
|
||||
import time
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
|
||||
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
|
||||
|
||||
def init_view_stations(spark):
|
||||
"""Lädt die Stationsdaten für Aufgabe 11"""
|
||||
s_path = HDFSPATH_STATIONS + "german_stations.parquet"
|
||||
d_path = HDFSPATH_STATIONS + "german_stations_data.parquet"
|
||||
|
||||
spark.read.parquet(s_path).createOrReplaceTempView("german_stations")
|
||||
spark.read.parquet(d_path).createOrReplaceTempView("german_stations_data")
|
||||
|
||||
def init_view_stocks(spark):
|
||||
"""Lädt die Stocks-Daten für Aufgabe 12"""
|
||||
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
|
||||
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
|
||||
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
|
||||
|
||||
# ---------------------------------------------------------
|
||||
# AUFGABE 11
|
||||
# ---------------------------------------------------------
|
||||
|
||||
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
|
||||
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
|
||||
start = time.time()
|
||||
|
||||
# 1. Station ID finden
|
||||
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE station_name LIKE '%{station_name}%'")
|
||||
try:
|
||||
sid = sid_df.collect()[0]['stationId']
|
||||
except IndexError:
|
||||
print(f"Station {station_name} nicht gefunden.")
|
||||
return
|
||||
|
||||
# 2. Rollup Query vorbereiten
|
||||
q_prep = f"""
|
||||
SELECT
|
||||
YEAR(date) as yr,
|
||||
QUARTER(date) as qt,
|
||||
MONTH(date) as mo,
|
||||
DAY(date) as da,
|
||||
TT_TU
|
||||
FROM german_stations_data
|
||||
WHERE stationId = {sid} AND TT_TU IS NOT NULL AND TT_TU > -50
|
||||
"""
|
||||
spark.sql(q_prep).createOrReplaceTempView("data_prep")
|
||||
|
||||
q_rollup = """
|
||||
SELECT
|
||||
yr, qt, mo, da,
|
||||
MIN(TT_TU) as min_temp,
|
||||
MAX(TT_TU) as max_temp,
|
||||
AVG(TT_TU) as avg_temp,
|
||||
|
||||
-- Datums-Konstruktion für Plots
|
||||
DATE(STRING(yr) || '-' || STRING(qt*3-2) || '-01') as qt_date,
|
||||
MAKE_DATE(yr, mo, 1) as mo_date,
|
||||
MAKE_DATE(yr, 1, 1) as yr_date,
|
||||
MAKE_DATE(yr, mo, da) as da_date
|
||||
|
||||
FROM data_prep
|
||||
GROUP BY ROLLUP(yr, qt, mo, da)
|
||||
"""
|
||||
|
||||
df_rollup = spark.sql(q_rollup)
|
||||
df_rollup.cache()
|
||||
df_rollup.createOrReplaceTempView("station_rollup")
|
||||
|
||||
# Trigger Action for Cache & Time Measurement
|
||||
count = df_rollup.count()
|
||||
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start:.2f}s")
|
||||
input(">> 11a: Check Spark UI (Stages/Storage) jetzt. Enter für Plots...")
|
||||
|
||||
# Plot 1: Tageswerte (letzte 3 Jahre der Daten)
|
||||
q_days = """
|
||||
SELECT da_date as date, avg_temp
|
||||
FROM station_rollup
|
||||
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
|
||||
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup)
|
||||
ORDER BY date
|
||||
"""
|
||||
pdf_days = spark.sql(q_days).toPandas()
|
||||
|
||||
plt.figure(1, figsize=(10, 5))
|
||||
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
|
||||
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
|
||||
plt.xlabel('Date')
|
||||
plt.ylabel('Temp °C')
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
# Plot 2: Monatswerte (10-20 Jahre)
|
||||
q_months = """
|
||||
SELECT mo_date as date, avg_temp
|
||||
FROM station_rollup
|
||||
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
|
||||
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
||||
ORDER BY date
|
||||
"""
|
||||
pdf_months = spark.sql(q_months).toPandas()
|
||||
|
||||
plt.figure(2, figsize=(10, 5))
|
||||
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
|
||||
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
|
||||
plt.xlabel('Date')
|
||||
plt.ylabel('Temp °C')
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
# Plot 3: Quartalswerte
|
||||
q_quarters = """
|
||||
SELECT qt_date as date, avg_temp
|
||||
FROM station_rollup
|
||||
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
|
||||
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
||||
ORDER BY date
|
||||
"""
|
||||
pdf_quarters = spark.sql(q_quarters).toPandas()
|
||||
|
||||
plt.figure(3, figsize=(10, 5))
|
||||
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
|
||||
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
|
||||
plt.show()
|
||||
|
||||
# Plot 4: Jahreswerte
|
||||
q_years = """
|
||||
SELECT yr_date as date, min_temp, max_temp, avg_temp
|
||||
FROM station_rollup
|
||||
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
|
||||
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
|
||||
ORDER BY date
|
||||
"""
|
||||
pdf_years = spark.sql(q_years).toPandas()
|
||||
|
||||
plt.figure(4, figsize=(10, 5))
|
||||
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
|
||||
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
|
||||
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
|
||||
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
||||
def task_11b_rank(spark: SparkSession):
|
||||
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
|
||||
start = time.time()
|
||||
|
||||
q_tempmonat = """
|
||||
SELECT
|
||||
d.stationId,
|
||||
s.station_name,
|
||||
SUBSTR(CAST(d.date AS STRING), 1, 4) as year,
|
||||
SUBSTR(CAST(d.date AS STRING), 6, 2) as month,
|
||||
MIN(d.TT_TU) as min_t,
|
||||
MAX(d.TT_TU) as max_t,
|
||||
AVG(d.TT_TU) as avg_t
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations s ON d.stationId = s.stationId
|
||||
WHERE d.TT_TU IS NOT NULL AND d.TT_TU > -50
|
||||
GROUP BY d.stationId, s.station_name, year, month
|
||||
"""
|
||||
df_tm = spark.sql(q_tempmonat)
|
||||
df_tm.createOrReplaceTempView("tempmonat")
|
||||
|
||||
# 1. Ranking Partitioniert nach Monat im Jahr 2015
|
||||
print(" > Berechne Ranking für 2015 (partitioniert nach Monat)...")
|
||||
q_rank_2015 = """
|
||||
SELECT
|
||||
month, station_name, min_t,
|
||||
RANK() OVER (PARTITION BY month ORDER BY min_t ASC) as rank_min,
|
||||
RANK() OVER (PARTITION BY month ORDER BY max_t ASC) as rank_max,
|
||||
RANK() OVER (PARTITION BY month ORDER BY avg_t ASC) as rank_avg
|
||||
FROM tempmonat
|
||||
WHERE year = '2015'
|
||||
ORDER BY rank_min, month
|
||||
"""
|
||||
spark.sql(q_rank_2015).show(10)
|
||||
|
||||
# 2. Globales Ranking (über alle Monate/Jahre hinweg)
|
||||
print(" > Berechne Ranking global (kälteste Monate aller Zeiten)...")
|
||||
q_rank_global = """
|
||||
SELECT
|
||||
year, month, station_name, min_t,
|
||||
RANK() OVER (ORDER BY min_t ASC) as rank_min,
|
||||
RANK() OVER (ORDER BY max_t ASC) as rank_max,
|
||||
RANK() OVER (ORDER BY avg_t ASC) as rank_avg
|
||||
FROM tempmonat
|
||||
ORDER BY rank_min
|
||||
"""
|
||||
spark.sql(q_rank_global).show(10)
|
||||
|
||||
print(f"Dauer 11b: {time.time() - start:.2f}s")
|
||||
input(">> 11b: Check Spark UI (Jobs/Stages). Enter...")
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
|
||||
def task_11c_groupingsets(spark: SparkSession):
|
||||
print("\n--- Aufgabe 11c: Grouping Sets ---")
|
||||
start = time.time()
|
||||
def read_parquet_tables(spark: SparkSession) -> None:
|
||||
"""Load station master data and hourly measurements from parquet if needed."""
|
||||
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||
|
||||
q_prep = """
|
||||
SELECT
|
||||
CAST(SUBSTR(CAST(d.date AS STRING), 1, 4) AS INT) as year,
|
||||
CAST(SUBSTR(CAST(d.date AS STRING), 6, 2) AS INT) as month,
|
||||
s.station_name,
|
||||
s.bundesland,
|
||||
d.TT_TU
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations s ON d.stationId = s.stationId
|
||||
WHERE d.TT_TU > -50
|
||||
"""
|
||||
spark.sql(q_prep).createOrReplaceTempView("gs_base")
|
||||
stations_df = spark.read.parquet(stations_path)
|
||||
stations_df.createOrReplaceTempView("german_stations")
|
||||
stations_df.cache()
|
||||
|
||||
q_sets = """
|
||||
SELECT
|
||||
year,
|
||||
month,
|
||||
bundesland,
|
||||
station_name,
|
||||
MIN(TT_TU) as min_t, MAX(TT_TU) as max_t, AVG(TT_TU) as avg_t
|
||||
FROM gs_base
|
||||
GROUP BY GROUPING SETS (
|
||||
(year, bundesland),
|
||||
(year, station_name),
|
||||
(month, bundesland)
|
||||
)
|
||||
"""
|
||||
df_gs = spark.sql(q_sets)
|
||||
df_gs.cache()
|
||||
df_gs.createOrReplaceTempView("grouping_result")
|
||||
|
||||
# Action zum Cachen
|
||||
df_gs.count()
|
||||
print(f"Grouping Sets berechnet. Dauer: {time.time() - start:.2f}s")
|
||||
|
||||
print("Auswahl 1: Jahr & Bundesland")
|
||||
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
|
||||
|
||||
print("Auswahl 2: Jahr & Station")
|
||||
spark.sql("SELECT year, station_name, avg_t FROM grouping_result WHERE bundesland IS NULL AND month IS NULL ORDER BY year DESC, station_name").show(5)
|
||||
|
||||
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
|
||||
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
|
||||
|
||||
input(">> 11c: Check Spark UI (Zugriffspläne/Storage). Enter...")
|
||||
products_df = spark.read.parquet(products_path)
|
||||
products_df.createOrReplaceTempView("german_stations_data")
|
||||
products_df.cache()
|
||||
|
||||
|
||||
# ---------------------------------------------------------
|
||||
# AUFGABE 12
|
||||
# ---------------------------------------------------------
|
||||
def _escape_like(value: str) -> str:
|
||||
"""Escape single quotes for safe SQL literal usage."""
|
||||
return value.replace("'", "''")
|
||||
|
||||
def task_12_stocks_analysis(spark: SparkSession):
|
||||
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
|
||||
|
||||
# a) Erstes und letztes Datum je Symbol
|
||||
print("a) Min/Max Datum pro Symbol")
|
||||
t0 = time.time()
|
||||
q_a = """
|
||||
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
|
||||
FROM stocks
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
spark.sql(q_a).show(5)
|
||||
print(f"Zeit a): {time.time()-t0:.2f}s")
|
||||
|
||||
# b) Aggregationen 2009
|
||||
print("\nb) High/Low/Avg Close 2009")
|
||||
t0 = time.time()
|
||||
q_b = """
|
||||
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close
|
||||
FROM stocks
|
||||
WHERE YEAR(date) = 2009
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
spark.sql(q_b).show(5)
|
||||
print(f"Zeit b): {time.time()-t0:.2f}s")
|
||||
def resolve_station_id(spark: SparkSession, station_identifier) -> int:
|
||||
"""Resolve station id either from int input or fuzzy name search."""
|
||||
if isinstance(station_identifier, int):
|
||||
return station_identifier
|
||||
if isinstance(station_identifier, str) and station_identifier.strip().isdigit():
|
||||
return int(station_identifier.strip())
|
||||
if isinstance(station_identifier, str):
|
||||
needle = _escape_like(station_identifier.lower())
|
||||
q = (
|
||||
"SELECT stationId FROM german_stations "
|
||||
f"WHERE lower(station_name) LIKE '%{needle}%' ORDER BY station_name LIMIT 1"
|
||||
)
|
||||
result = spark.sql(q).collect()
|
||||
if not result:
|
||||
raise ValueError(f"No station found for pattern '{station_identifier}'")
|
||||
return int(result[0]["stationId"])
|
||||
raise ValueError("station_identifier must be int or str")
|
||||
|
||||
# c) Lateral View (Explode Portfolio)
|
||||
print("\nc) Lateral View: Aktien in Portfolios")
|
||||
t0 = time.time()
|
||||
|
||||
q_c = """
|
||||
SELECT
|
||||
h.symbol,
|
||||
SUM(h.amount) as total_shares,
|
||||
COUNT(p.portfolioId) as num_portfolios,
|
||||
AVG(h.amount) as avg_per_portfolio
|
||||
FROM portfolio p
|
||||
LATERAL VIEW explode(holdings) t AS h
|
||||
GROUP BY h.symbol
|
||||
ORDER BY h.symbol
|
||||
"""
|
||||
spark.sql(q_c).show(5)
|
||||
print(f"Zeit c): {time.time()-t0:.2f}s")
|
||||
|
||||
# d) Symbole in keinem Portfolio (Anti Join)
|
||||
print("\nd) Symbole ohne Portfolio")
|
||||
t0 = time.time()
|
||||
q_d = """
|
||||
SELECT DISTINCT s.symbol
|
||||
FROM stocks s
|
||||
LEFT ANTI JOIN (
|
||||
SELECT DISTINCT h.symbol
|
||||
FROM portfolio p
|
||||
LATERAL VIEW explode(holdings) t AS h
|
||||
) p_sym ON s.symbol = p_sym.symbol
|
||||
ORDER BY s.symbol
|
||||
"""
|
||||
spark.sql(q_d).show(5)
|
||||
print(f"Zeit d): {time.time()-t0:.2f}s")
|
||||
|
||||
input(">> 12 a-d fertig. Check UI. Enter für e)...")
|
||||
def build_station_rollup_for_station(spark: SparkSession, station_identifier) -> None:
|
||||
"""Create rollup view with min/max/avg per hour/day/month/quarter/year."""
|
||||
station_id = resolve_station_id(spark, station_identifier)
|
||||
q = f"""
|
||||
WITH base AS (
|
||||
SELECT
|
||||
d.stationId,
|
||||
gs.station_name,
|
||||
TO_TIMESTAMP(CONCAT(d.date, LPAD(CAST(d.hour AS STRING), 2, '0')), 'yyyyMMddHH') AS hour_ts,
|
||||
TO_DATE(d.date, 'yyyyMMdd') AS day_date,
|
||||
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_in_year,
|
||||
QUARTER(TO_DATE(d.date, 'yyyyMMdd')) AS quarter_in_year,
|
||||
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
|
||||
d.TT_TU AS temperature
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations gs ON d.stationId = gs.stationId
|
||||
WHERE d.stationId = {station_id}
|
||||
AND d.TT_TU IS NOT NULL
|
||||
AND d.TT_TU <> -999
|
||||
),
|
||||
rollup_base AS (
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
hour_ts,
|
||||
day_date,
|
||||
month_in_year,
|
||||
quarter_in_year,
|
||||
year_value,
|
||||
MIN(temperature) AS min_temp,
|
||||
MAX(temperature) AS max_temp,
|
||||
AVG(temperature) AS avg_temp
|
||||
FROM base
|
||||
GROUP BY stationId, station_name, ROLLUP(year_value, quarter_in_year, month_in_year, day_date, hour_ts)
|
||||
)
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
hour_ts,
|
||||
day_date,
|
||||
month_in_year,
|
||||
quarter_in_year,
|
||||
year_value,
|
||||
CASE WHEN month_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(month_in_year AS STRING), 2, '0'), '-01')) END AS month_start_date,
|
||||
CASE WHEN quarter_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(quarter_in_year * 3 - 2 AS STRING), 2, '0'), '-01')) END AS quarter_start_date,
|
||||
CASE WHEN year_value IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-01-01')) END AS year_start_date,
|
||||
min_temp,
|
||||
max_temp,
|
||||
avg_temp
|
||||
FROM rollup_base
|
||||
"""
|
||||
rollup_df = spark.sql(q)
|
||||
rollup_df.cache()
|
||||
rollup_df.createOrReplaceTempView("station_rollup")
|
||||
|
||||
# e) Portfolio Wert Ende 2010
|
||||
print("\ne) Portfolio Bewertung Ende 2010")
|
||||
t0 = time.time()
|
||||
|
||||
q_last_price = """
|
||||
SELECT symbol, close
|
||||
FROM (
|
||||
SELECT
|
||||
symbol,
|
||||
close,
|
||||
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
|
||||
FROM stocks
|
||||
WHERE YEAR(date) = 2010
|
||||
) tmp
|
||||
WHERE rn = 1
|
||||
"""
|
||||
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
|
||||
|
||||
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren
|
||||
q_val = """
|
||||
SELECT
|
||||
p.portfolioId,
|
||||
SUM(h.amount * s.close) as portfolio_value_2010
|
||||
FROM portfolio p
|
||||
LATERAL VIEW explode(holdings) t AS h
|
||||
JOIN stocks_2010_end s ON h.symbol = s.symbol
|
||||
GROUP BY p.portfolioId
|
||||
ORDER BY p.portfolioId
|
||||
"""
|
||||
spark.sql(q_val).show(5)
|
||||
print(f"Zeit e): {time.time()-t0:.2f}s")
|
||||
def _year_window(spark: SparkSession, years_back: int, station_id: int) -> tuple[int, int] | None:
|
||||
stats = spark.sql(
|
||||
f"SELECT MIN(year_value) AS min_year, MAX(year_value) AS max_year FROM station_rollup WHERE year_value IS NOT NULL AND stationId = {station_id}"
|
||||
).collect()
|
||||
if not stats or stats[0]["max_year"] is None:
|
||||
return None
|
||||
min_year = int(stats[0]["min_year"])
|
||||
max_year = int(stats[0]["max_year"])
|
||||
start_year = max(min_year, max_year - years_back + 1)
|
||||
return start_year, max_year
|
||||
|
||||
|
||||
def plot_station_rollup_levels(
|
||||
spark: SparkSession,
|
||||
station_identifier,
|
||||
day_span_years: int = 3,
|
||||
agg_span_years: int = 15,
|
||||
) -> None:
|
||||
"""Plot day, month, quarter, and year aggregates for the given station."""
|
||||
station_id = resolve_station_id(spark, station_identifier)
|
||||
needs_refresh = not spark.catalog.tableExists("station_rollup")
|
||||
if not needs_refresh:
|
||||
count = spark.sql(
|
||||
f"SELECT COUNT(*) AS cnt FROM station_rollup WHERE stationId = {station_id}"
|
||||
).collect()[0]["cnt"]
|
||||
needs_refresh = count == 0
|
||||
if needs_refresh:
|
||||
build_station_rollup_for_station(spark, station_id)
|
||||
|
||||
day_window = _year_window(spark, day_span_years, station_id)
|
||||
if day_window is None:
|
||||
print("No data available for plotting")
|
||||
return
|
||||
month_window = _year_window(spark, agg_span_years, station_id)
|
||||
if month_window is None:
|
||||
print("No aggregated window available")
|
||||
return
|
||||
|
||||
def _plot(query: str, figure_idx: int, title: str, x_col: str = "bucket_date") -> None:
|
||||
pdf = spark.sql(query).toPandas()
|
||||
if pdf.empty:
|
||||
print(f"No data for {title}")
|
||||
return
|
||||
plt.figure(num=figure_idx)
|
||||
plt.clf()
|
||||
metrics = [
|
||||
("min_temp", "Min", "#1f77b4"),
|
||||
("avg_temp", "Avg", "#ff7f0e"),
|
||||
("max_temp", "Max", "#2ca02c"),
|
||||
]
|
||||
for col, label, color in metrics:
|
||||
if col in pdf:
|
||||
plt.plot(pdf[x_col], pdf[col], label=label, color=color)
|
||||
plt.title(title)
|
||||
plt.xlabel("Datum")
|
||||
plt.ylabel("Temperatur (°C)")
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
day_start, day_end = day_window
|
||||
q_day = f"""
|
||||
SELECT day_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND hour_ts IS NULL
|
||||
AND day_date IS NOT NULL
|
||||
AND year_value BETWEEN {day_start} AND {day_end}
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_day, 1, f"Tagesmittelwerte {day_start}-{day_end}")
|
||||
|
||||
agg_start, agg_end = month_window
|
||||
q_month = f"""
|
||||
SELECT month_start_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND day_date IS NULL
|
||||
AND month_in_year IS NOT NULL
|
||||
AND year_value BETWEEN {agg_start} AND {agg_end}
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_month, 2, f"Monatsmittelwerte {agg_start}-{agg_end}")
|
||||
|
||||
q_quarter = f"""
|
||||
SELECT quarter_start_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND month_in_year IS NULL
|
||||
AND quarter_in_year IS NOT NULL
|
||||
AND year_value BETWEEN {agg_start} AND {agg_end}
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_quarter, 3, f"Quartalsmittelwerte {agg_start}-{agg_end}")
|
||||
|
||||
q_year = f"""
|
||||
SELECT year_start_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND quarter_in_year IS NULL
|
||||
AND year_value IS NOT NULL
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_year, 4, "Jahresmittelwerte")
|
||||
|
||||
|
||||
def create_tempmonat(spark: SparkSession) -> None:
|
||||
"""Create cached temp table tempmonat with monthly aggregates per station."""
|
||||
q = """
|
||||
SELECT
|
||||
d.stationId,
|
||||
gs.station_name,
|
||||
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
|
||||
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
|
||||
MIN(d.TT_TU) AS min_temp,
|
||||
MAX(d.TT_TU) AS max_temp,
|
||||
AVG(d.TT_TU) AS avg_temp
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations gs ON d.stationId = gs.stationId
|
||||
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
|
||||
GROUP BY d.stationId, gs.station_name, YEAR(TO_DATE(d.date, 'yyyyMMdd')), MONTH(TO_DATE(d.date, 'yyyyMMdd'))
|
||||
"""
|
||||
monthly_df = spark.sql(q)
|
||||
monthly_df.cache()
|
||||
monthly_df.createOrReplaceTempView("tempmonat")
|
||||
|
||||
|
||||
def rank_coldest_per_month_2015(spark: SparkSession):
|
||||
"""Rank stations by coldest values per month for 2015 using tempmonat."""
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
year_value,
|
||||
month_value,
|
||||
min_temp,
|
||||
max_temp,
|
||||
avg_temp,
|
||||
RANK() OVER (PARTITION BY month_value ORDER BY min_temp ASC) AS rank_min,
|
||||
RANK() OVER (PARTITION BY month_value ORDER BY max_temp ASC) AS rank_max,
|
||||
RANK() OVER (PARTITION BY month_value ORDER BY avg_temp ASC) AS rank_avg
|
||||
FROM tempmonat
|
||||
WHERE year_value = 2015
|
||||
ORDER BY rank_min, month_value
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def rank_coldest_overall(spark: SparkSession):
|
||||
"""Rank stations by coldest values over all months/years (no partition)."""
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
year_value,
|
||||
month_value,
|
||||
min_temp,
|
||||
max_temp,
|
||||
avg_temp,
|
||||
RANK() OVER (ORDER BY min_temp ASC) AS rank_min,
|
||||
RANK() OVER (ORDER BY max_temp ASC) AS rank_max,
|
||||
RANK() OVER (ORDER BY avg_temp ASC) AS rank_avg
|
||||
FROM tempmonat
|
||||
ORDER BY rank_min
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def create_grouping_sets_overview(spark: SparkSession) -> None:
|
||||
"""Compute grouping sets for requested aggregations and cache the result."""
|
||||
q = """
|
||||
WITH base AS (
|
||||
SELECT
|
||||
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
|
||||
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
|
||||
gs.bundesland,
|
||||
gs.stationId,
|
||||
gs.station_name,
|
||||
d.TT_TU AS temperature
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations gs ON d.stationId = gs.stationId
|
||||
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
|
||||
)
|
||||
SELECT
|
||||
year_value,
|
||||
month_value,
|
||||
bundesland,
|
||||
stationId,
|
||||
station_name,
|
||||
MIN(temperature) AS min_temp,
|
||||
MAX(temperature) AS max_temp,
|
||||
AVG(temperature) AS avg_temp
|
||||
FROM base
|
||||
GROUP BY GROUPING SETS (
|
||||
(year_value, bundesland),
|
||||
(year_value, stationId, station_name, bundesland),
|
||||
(month_value, bundesland)
|
||||
)
|
||||
"""
|
||||
grouped_df = spark.sql(q)
|
||||
grouped_df.cache()
|
||||
grouped_df.createOrReplaceTempView("grouping_sets_stats")
|
||||
|
||||
|
||||
def select_year_bundesland(spark: SparkSession):
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT year_value, bundesland, min_temp, max_temp, avg_temp
|
||||
FROM grouping_sets_stats
|
||||
WHERE bundesland IS NOT NULL AND month_value IS NULL AND stationId IS NULL
|
||||
ORDER BY year_value, bundesland
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def select_year_station(spark: SparkSession):
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT year_value, stationId, station_name, min_temp, max_temp, avg_temp
|
||||
FROM grouping_sets_stats
|
||||
WHERE stationId IS NOT NULL AND month_value IS NULL
|
||||
ORDER BY year_value, stationId
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def select_month_bundesland(spark: SparkSession):
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT month_value, bundesland, min_temp, max_temp, avg_temp
|
||||
FROM grouping_sets_stats
|
||||
WHERE month_value IS NOT NULL AND year_value IS NULL
|
||||
ORDER BY month_value, bundesland
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def main(scon, spark):
|
||||
init_view_stations(spark)
|
||||
|
||||
# Aufgabe 11
|
||||
task_11a_rollup(spark, station_name="Kempten")
|
||||
task_11b_rank(spark)
|
||||
task_11c_groupingsets(spark)
|
||||
read_parquet_tables(spark)
|
||||
build_station_rollup_for_station(spark, "kempten")
|
||||
plot_station_rollup_levels(spark, "kempten")
|
||||
|
||||
# Aufgabe 12
|
||||
init_view_stocks(spark)
|
||||
task_12_stocks_analysis(spark)
|
||||
create_tempmonat(spark)
|
||||
print("Rangfolgen 2015 je Monat:")
|
||||
rank_coldest_per_month_2015(spark).show(36, truncate=False)
|
||||
print("Rangfolgen gesamt:")
|
||||
rank_coldest_overall(spark).show(36, truncate=False)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(scon, spark)
|
||||
create_grouping_sets_overview(spark)
|
||||
print("Jahr vs Bundesland:")
|
||||
select_year_bundesland(spark).show(20, truncate=False)
|
||||
print("Jahr vs Station:")
|
||||
select_year_station(spark).show(20, truncate=False)
|
||||
print("Monat vs Bundesland:")
|
||||
select_month_bundesland(spark).show(20, truncate=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
|
||||
276
Aufgabe 12/Aufgabe12.py
Normal file
276
Aufgabe 12/Aufgabe12.py
Normal file
@@ -0,0 +1,276 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Iterable, Sequence
|
||||
|
||||
from pyspark.sql import SparkSession, functions as F, types as T
|
||||
|
||||
from sparkstart import scon, spark
|
||||
|
||||
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
|
||||
_DATE_FALLBACK_EXPR = "COALESCE(date_value, TO_DATE(date_str), TO_DATE(date_str, 'yyyyMMdd'))"
|
||||
|
||||
|
||||
def _resolve_column_name(columns: Sequence[str], candidates: Iterable[str]) -> str:
|
||||
|
||||
lowered = {col.lower(): col for col in columns}
|
||||
for candidate in candidates:
|
||||
match = lowered.get(candidate.lower())
|
||||
if match:
|
||||
return match
|
||||
raise ValueError(f"None of the candidate columns {list(candidates)} exist in {columns}")
|
||||
|
||||
|
||||
def _normalize_stocks_view(spark: SparkSession) -> None:
|
||||
|
||||
stocks_path = HDFSPATH + "stocks/stocks.parquet"
|
||||
stocks_df = spark.read.parquet(stocks_path)
|
||||
|
||||
symbol_col = _resolve_column_name(stocks_df.columns, ("symbol", "ticker"))
|
||||
date_col = _resolve_column_name(stocks_df.columns, ("date", "pricedate", "dt"))
|
||||
close_col = _resolve_column_name(stocks_df.columns, ("close", "closeprice", "closingprice"))
|
||||
|
||||
stocks_df = (
|
||||
stocks_df
|
||||
.select(
|
||||
F.col(symbol_col).alias("symbol"),
|
||||
F.col(date_col).alias("raw_date"),
|
||||
F.col(close_col).alias("close_raw"),
|
||||
)
|
||||
.withColumn("date_str", F.col("raw_date").cast("string"))
|
||||
)
|
||||
|
||||
date_candidates = [
|
||||
F.col("raw_date").cast("date"),
|
||||
F.to_date("raw_date"),
|
||||
F.to_date("date_str"),
|
||||
F.to_date("date_str", "yyyyMMdd"),
|
||||
F.to_date("date_str", "MM/dd/yyyy"),
|
||||
]
|
||||
|
||||
stocks_df = (
|
||||
stocks_df
|
||||
.withColumn("date_value", F.coalesce(*date_candidates))
|
||||
.withColumn("year_value", F.substring("date_str", 1, 4).cast("int"))
|
||||
.withColumn("close_value", F.col("close_raw").cast("double"))
|
||||
.select("symbol", "date_value", "date_str", "year_value", "close_value")
|
||||
)
|
||||
|
||||
stocks_df.cache()
|
||||
stocks_df.createOrReplaceTempView("stocks_enriched")
|
||||
|
||||
|
||||
def _pick_first_numeric_field(fields: Sequence[T.StructField]) -> str:
|
||||
|
||||
numeric_types = (
|
||||
T.ByteType,
|
||||
T.ShortType,
|
||||
T.IntegerType,
|
||||
T.LongType,
|
||||
T.FloatType,
|
||||
T.DoubleType,
|
||||
T.DecimalType,
|
||||
)
|
||||
for field in fields:
|
||||
if isinstance(field.dataType, numeric_types):
|
||||
return field.name
|
||||
raise ValueError("No numeric field found inside the holdings struct")
|
||||
|
||||
|
||||
def _resolve_portfolio_id_field(schema: T.StructType) -> str:
|
||||
|
||||
priority = ("portfolio_id", "portfolioid", "id")
|
||||
lowered = {field.name.lower(): field.name for field in schema.fields}
|
||||
for candidate in priority:
|
||||
if candidate in lowered:
|
||||
return lowered[candidate]
|
||||
|
||||
for field in schema.fields:
|
||||
if not isinstance(field.dataType, (T.ArrayType, T.MapType)):
|
||||
return field.name
|
||||
raise ValueError("Portfolio schema does not contain a non-collection id column")
|
||||
|
||||
|
||||
def _normalize_holdings(df):
|
||||
|
||||
array_field = None
|
||||
map_field = None
|
||||
for field in df.schema.fields:
|
||||
if isinstance(field.dataType, T.ArrayType) and isinstance(field.dataType.elementType, T.StructType):
|
||||
array_field = field
|
||||
break
|
||||
if isinstance(field.dataType, T.MapType) and isinstance(field.dataType.keyType, T.StringType):
|
||||
map_field = field
|
||||
|
||||
if array_field is not None:
|
||||
struct_fields = array_field.dataType.elementType.fields
|
||||
symbol_field = _resolve_column_name([f.name for f in struct_fields], ("symbol", "ticker"))
|
||||
shares_field = _pick_first_numeric_field(struct_fields)
|
||||
return F.expr(
|
||||
f"transform(`{array_field.name}`, x -> named_struct('symbol', x.`{symbol_field}`, 'shares', CAST(x.`{shares_field}` AS DOUBLE)))"
|
||||
)
|
||||
|
||||
if map_field is not None and isinstance(map_field.dataType.valueType, (T.IntegerType, T.LongType, T.FloatType, T.DoubleType, T.DecimalType)):
|
||||
return F.expr(
|
||||
f"transform(map_entries(`{map_field.name}`), x -> named_struct('symbol', x.key, 'shares', CAST(x.value AS DOUBLE)))"
|
||||
)
|
||||
|
||||
raise ValueError("Could not locate holdings column (array<struct> or map) in portfolio data")
|
||||
|
||||
|
||||
def _normalize_portfolio_view(spark: SparkSession) -> None:
|
||||
|
||||
portfolio_path = HDFSPATH + "stocks/portfolio.parquet"
|
||||
portfolio_df = spark.read.parquet(portfolio_path)
|
||||
|
||||
id_col = _resolve_portfolio_id_field(portfolio_df.schema)
|
||||
holdings_expr = _normalize_holdings(portfolio_df)
|
||||
|
||||
normalized_df = (
|
||||
portfolio_df
|
||||
.select(
|
||||
F.col(id_col).alias("portfolio_id"),
|
||||
holdings_expr.alias("holdings"),
|
||||
)
|
||||
)
|
||||
|
||||
normalized_df.cache()
|
||||
normalized_df.createOrReplaceTempView("portfolio")
|
||||
|
||||
spark.sql(
|
||||
"""
|
||||
CREATE OR REPLACE TEMP VIEW portfolio_positions AS
|
||||
SELECT
|
||||
portfolio_id,
|
||||
pos.symbol AS symbol,
|
||||
pos.shares AS shares
|
||||
FROM portfolio
|
||||
LATERAL VIEW explode(holdings) exploded AS pos
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def register_base_views(spark: SparkSession) -> None:
|
||||
|
||||
_normalize_stocks_view(spark)
|
||||
_normalize_portfolio_view(spark)
|
||||
|
||||
|
||||
def query_first_and_last_listing(spark: SparkSession):
|
||||
|
||||
q = f"""
|
||||
SELECT
|
||||
symbol,
|
||||
MIN({_DATE_FALLBACK_EXPR}) AS first_listing,
|
||||
MAX({_DATE_FALLBACK_EXPR}) AS last_listing
|
||||
FROM stocks_enriched
|
||||
WHERE symbol IS NOT NULL
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_close_stats_2009(spark: SparkSession):
|
||||
|
||||
q = """
|
||||
SELECT
|
||||
symbol,
|
||||
MAX(close_value) AS max_close,
|
||||
MIN(close_value) AS min_close,
|
||||
AVG(close_value) AS avg_close
|
||||
FROM stocks_enriched
|
||||
WHERE year_value = 2009 AND close_value IS NOT NULL AND symbol IS NOT NULL
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_portfolio_symbol_stats(spark: SparkSession):
|
||||
|
||||
q = """
|
||||
SELECT
|
||||
symbol,
|
||||
SUM(shares) AS total_shares,
|
||||
COUNT(DISTINCT portfolio_id) AS portfolio_count,
|
||||
AVG(shares) AS avg_shares_per_portfolio
|
||||
FROM portfolio_positions
|
||||
WHERE symbol IS NOT NULL
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_symbols_missing_in_portfolios(spark: SparkSession):
|
||||
|
||||
q = """
|
||||
SELECT DISTINCT s.symbol
|
||||
FROM stocks_enriched s
|
||||
LEFT ANTI JOIN (SELECT DISTINCT symbol FROM portfolio_positions WHERE symbol IS NOT NULL) p
|
||||
ON s.symbol = p.symbol
|
||||
WHERE s.symbol IS NOT NULL
|
||||
ORDER BY s.symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_portfolio_values_2010(spark: SparkSession):
|
||||
|
||||
q = f"""
|
||||
WITH quotes_2010 AS (
|
||||
SELECT
|
||||
symbol,
|
||||
close_value,
|
||||
ROW_NUMBER() OVER (
|
||||
PARTITION BY symbol
|
||||
ORDER BY {_DATE_FALLBACK_EXPR} DESC, date_str DESC
|
||||
) AS rn
|
||||
FROM stocks_enriched
|
||||
WHERE year_value = 2010 AND symbol IS NOT NULL AND close_value IS NOT NULL
|
||||
),
|
||||
last_quotes AS (
|
||||
SELECT symbol, close_value
|
||||
FROM quotes_2010
|
||||
WHERE rn = 1
|
||||
),
|
||||
portfolio_values AS (
|
||||
SELECT
|
||||
pp.portfolio_id,
|
||||
SUM(pp.shares * lq.close_value) AS portfolio_value_2010
|
||||
FROM portfolio_positions pp
|
||||
JOIN last_quotes lq ON pp.symbol = lq.symbol
|
||||
GROUP BY pp.portfolio_id
|
||||
)
|
||||
SELECT portfolio_id, portfolio_value_2010
|
||||
FROM portfolio_values
|
||||
ORDER BY portfolio_id
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def main(scon, spark):
|
||||
|
||||
register_base_views(spark)
|
||||
|
||||
print("(a) Erste und letzte Notierung je Symbol:")
|
||||
query_first_and_last_listing(spark).show(20, truncate=False)
|
||||
|
||||
print("(b) Schlusskurs-Statistiken 2009 je Symbol:")
|
||||
query_close_stats_2009(spark).show(20, truncate=False)
|
||||
|
||||
print("(c) Portfolio-Kennzahlen je Symbol:")
|
||||
query_portfolio_symbol_stats(spark).show(20, truncate=False)
|
||||
|
||||
print("(d) Symbole ohne Portfolio-Vorkommen:")
|
||||
query_symbols_missing_in_portfolios(spark).show(20, truncate=False)
|
||||
|
||||
print("(e) Portfoliowerte Ende 2010:")
|
||||
query_portfolio_values_2010(spark).show(20, truncate=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
22
Aufgabe 12/sparkstart.py
Normal file
22
Aufgabe 12/sparkstart.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Erzeugen einer Spark-Konfiguration
|
||||
"""
|
||||
|
||||
from pyspark import SparkConf, SparkContext
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
# connect to cluster
|
||||
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
conf.set("spark.executor.memory", '32g')
|
||||
conf.set("spark.driver.memory", '8g')
|
||||
conf.set("spark.cores.max", "40")
|
||||
scon = SparkContext(conf=conf)
|
||||
|
||||
|
||||
spark = SparkSession \
|
||||
.builder \
|
||||
.appName("Python Spark SQL") \
|
||||
.getOrCreate()
|
||||
Reference in New Issue
Block a user