This commit is contained in:
2025-12-11 20:55:44 +01:00
parent d18e9823e5
commit 622a228fb7
4 changed files with 642 additions and 345 deletions

View File

@@ -5,7 +5,6 @@ import matplotlib.pyplot as plt
HDFSPATH = "hdfs://193.174.205.250:54310/"
def read_parquets(spark: SparkSession):
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"

View File

@@ -1,366 +1,366 @@
from __future__ import annotations
from sparkstart import scon, spark
from pyspark.sql import SparkSession
import time
import matplotlib.pyplot as plt
import pandas as pd
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
def init_view_stations(spark):
"""Lädt die Stationsdaten für Aufgabe 11"""
s_path = HDFSPATH_STATIONS + "german_stations.parquet"
d_path = HDFSPATH_STATIONS + "german_stations_data.parquet"
spark.read.parquet(s_path).createOrReplaceTempView("german_stations")
spark.read.parquet(d_path).createOrReplaceTempView("german_stations_data")
def init_view_stocks(spark):
"""Lädt die Stocks-Daten für Aufgabe 12"""
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
# ---------------------------------------------------------
# AUFGABE 11
# ---------------------------------------------------------
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
start = time.time()
# 1. Station ID finden
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE station_name LIKE '%{station_name}%'")
try:
sid = sid_df.collect()[0]['stationId']
except IndexError:
print(f"Station {station_name} nicht gefunden.")
return
# 2. Rollup Query vorbereiten
q_prep = f"""
SELECT
YEAR(date) as yr,
QUARTER(date) as qt,
MONTH(date) as mo,
DAY(date) as da,
TT_TU
FROM german_stations_data
WHERE stationId = {sid} AND TT_TU IS NOT NULL AND TT_TU > -50
"""
spark.sql(q_prep).createOrReplaceTempView("data_prep")
q_rollup = """
SELECT
yr, qt, mo, da,
MIN(TT_TU) as min_temp,
MAX(TT_TU) as max_temp,
AVG(TT_TU) as avg_temp,
-- Datums-Konstruktion für Plots
DATE(STRING(yr) || '-' || STRING(qt*3-2) || '-01') as qt_date,
MAKE_DATE(yr, mo, 1) as mo_date,
MAKE_DATE(yr, 1, 1) as yr_date,
MAKE_DATE(yr, mo, da) as da_date
FROM data_prep
GROUP BY ROLLUP(yr, qt, mo, da)
"""
df_rollup = spark.sql(q_rollup)
df_rollup.cache()
df_rollup.createOrReplaceTempView("station_rollup")
# Trigger Action for Cache & Time Measurement
count = df_rollup.count()
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start:.2f}s")
input(">> 11a: Check Spark UI (Stages/Storage) jetzt. Enter für Plots...")
# Plot 1: Tageswerte (letzte 3 Jahre der Daten)
q_days = """
SELECT da_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup)
ORDER BY date
"""
pdf_days = spark.sql(q_days).toPandas()
plt.figure(1, figsize=(10, 5))
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
plt.xlabel('Date')
plt.ylabel('Temp °C')
plt.tight_layout()
plt.show()
# Plot 2: Monatswerte (10-20 Jahre)
q_months = """
SELECT mo_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
ORDER BY date
"""
pdf_months = spark.sql(q_months).toPandas()
plt.figure(2, figsize=(10, 5))
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
plt.xlabel('Date')
plt.ylabel('Temp °C')
plt.tight_layout()
plt.show()
# Plot 3: Quartalswerte
q_quarters = """
SELECT qt_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
ORDER BY date
"""
pdf_quarters = spark.sql(q_quarters).toPandas()
plt.figure(3, figsize=(10, 5))
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
plt.show()
# Plot 4: Jahreswerte
q_years = """
SELECT yr_date as date, min_temp, max_temp, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
ORDER BY date
"""
pdf_years = spark.sql(q_years).toPandas()
plt.figure(4, figsize=(10, 5))
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
plt.legend()
plt.show()
def task_11b_rank(spark: SparkSession):
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
start = time.time()
q_tempmonat = """
SELECT
d.stationId,
s.station_name,
SUBSTR(CAST(d.date AS STRING), 1, 4) as year,
SUBSTR(CAST(d.date AS STRING), 6, 2) as month,
MIN(d.TT_TU) as min_t,
MAX(d.TT_TU) as max_t,
AVG(d.TT_TU) as avg_t
FROM german_stations_data d
JOIN german_stations s ON d.stationId = s.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU > -50
GROUP BY d.stationId, s.station_name, year, month
"""
df_tm = spark.sql(q_tempmonat)
df_tm.createOrReplaceTempView("tempmonat")
# 1. Ranking Partitioniert nach Monat im Jahr 2015
print(" > Berechne Ranking für 2015 (partitioniert nach Monat)...")
q_rank_2015 = """
SELECT
month, station_name, min_t,
RANK() OVER (PARTITION BY month ORDER BY min_t ASC) as rank_min,
RANK() OVER (PARTITION BY month ORDER BY max_t ASC) as rank_max,
RANK() OVER (PARTITION BY month ORDER BY avg_t ASC) as rank_avg
FROM tempmonat
WHERE year = '2015'
ORDER BY rank_min, month
"""
spark.sql(q_rank_2015).show(10)
# 2. Globales Ranking (über alle Monate/Jahre hinweg)
print(" > Berechne Ranking global (kälteste Monate aller Zeiten)...")
q_rank_global = """
SELECT
year, month, station_name, min_t,
RANK() OVER (ORDER BY min_t ASC) as rank_min,
RANK() OVER (ORDER BY max_t ASC) as rank_max,
RANK() OVER (ORDER BY avg_t ASC) as rank_avg
FROM tempmonat
ORDER BY rank_min
"""
spark.sql(q_rank_global).show(10)
print(f"Dauer 11b: {time.time() - start:.2f}s")
input(">> 11b: Check Spark UI (Jobs/Stages). Enter...")
HDFSPATH = "hdfs://193.174.205.250:54310/"
def task_11c_groupingsets(spark: SparkSession):
print("\n--- Aufgabe 11c: Grouping Sets ---")
start = time.time()
def read_parquet_tables(spark: SparkSession) -> None:
"""Load station master data and hourly measurements from parquet if needed."""
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
q_prep = """
SELECT
CAST(SUBSTR(CAST(d.date AS STRING), 1, 4) AS INT) as year,
CAST(SUBSTR(CAST(d.date AS STRING), 6, 2) AS INT) as month,
s.station_name,
s.bundesland,
d.TT_TU
FROM german_stations_data d
JOIN german_stations s ON d.stationId = s.stationId
WHERE d.TT_TU > -50
"""
spark.sql(q_prep).createOrReplaceTempView("gs_base")
stations_df = spark.read.parquet(stations_path)
stations_df.createOrReplaceTempView("german_stations")
stations_df.cache()
q_sets = """
SELECT
year,
month,
bundesland,
station_name,
MIN(TT_TU) as min_t, MAX(TT_TU) as max_t, AVG(TT_TU) as avg_t
FROM gs_base
GROUP BY GROUPING SETS (
(year, bundesland),
(year, station_name),
(month, bundesland)
)
"""
df_gs = spark.sql(q_sets)
df_gs.cache()
df_gs.createOrReplaceTempView("grouping_result")
# Action zum Cachen
df_gs.count()
print(f"Grouping Sets berechnet. Dauer: {time.time() - start:.2f}s")
print("Auswahl 1: Jahr & Bundesland")
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
print("Auswahl 2: Jahr & Station")
spark.sql("SELECT year, station_name, avg_t FROM grouping_result WHERE bundesland IS NULL AND month IS NULL ORDER BY year DESC, station_name").show(5)
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
input(">> 11c: Check Spark UI (Zugriffspläne/Storage). Enter...")
products_df = spark.read.parquet(products_path)
products_df.createOrReplaceTempView("german_stations_data")
products_df.cache()
# ---------------------------------------------------------
# AUFGABE 12
# ---------------------------------------------------------
def _escape_like(value: str) -> str:
"""Escape single quotes for safe SQL literal usage."""
return value.replace("'", "''")
def task_12_stocks_analysis(spark: SparkSession):
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
# a) Erstes und letztes Datum je Symbol
print("a) Min/Max Datum pro Symbol")
t0 = time.time()
q_a = """
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
FROM stocks
GROUP BY symbol
ORDER BY symbol
"""
spark.sql(q_a).show(5)
print(f"Zeit a): {time.time()-t0:.2f}s")
# b) Aggregationen 2009
print("\nb) High/Low/Avg Close 2009")
t0 = time.time()
q_b = """
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close
FROM stocks
WHERE YEAR(date) = 2009
GROUP BY symbol
ORDER BY symbol
"""
spark.sql(q_b).show(5)
print(f"Zeit b): {time.time()-t0:.2f}s")
def resolve_station_id(spark: SparkSession, station_identifier) -> int:
"""Resolve station id either from int input or fuzzy name search."""
if isinstance(station_identifier, int):
return station_identifier
if isinstance(station_identifier, str) and station_identifier.strip().isdigit():
return int(station_identifier.strip())
if isinstance(station_identifier, str):
needle = _escape_like(station_identifier.lower())
q = (
"SELECT stationId FROM german_stations "
f"WHERE lower(station_name) LIKE '%{needle}%' ORDER BY station_name LIMIT 1"
)
result = spark.sql(q).collect()
if not result:
raise ValueError(f"No station found for pattern '{station_identifier}'")
return int(result[0]["stationId"])
raise ValueError("station_identifier must be int or str")
# c) Lateral View (Explode Portfolio)
print("\nc) Lateral View: Aktien in Portfolios")
t0 = time.time()
q_c = """
SELECT
h.symbol,
SUM(h.amount) as total_shares,
COUNT(p.portfolioId) as num_portfolios,
AVG(h.amount) as avg_per_portfolio
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
GROUP BY h.symbol
ORDER BY h.symbol
"""
spark.sql(q_c).show(5)
print(f"Zeit c): {time.time()-t0:.2f}s")
# d) Symbole in keinem Portfolio (Anti Join)
print("\nd) Symbole ohne Portfolio")
t0 = time.time()
q_d = """
SELECT DISTINCT s.symbol
FROM stocks s
LEFT ANTI JOIN (
SELECT DISTINCT h.symbol
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
) p_sym ON s.symbol = p_sym.symbol
ORDER BY s.symbol
"""
spark.sql(q_d).show(5)
print(f"Zeit d): {time.time()-t0:.2f}s")
input(">> 12 a-d fertig. Check UI. Enter für e)...")
def build_station_rollup_for_station(spark: SparkSession, station_identifier) -> None:
"""Create rollup view with min/max/avg per hour/day/month/quarter/year."""
station_id = resolve_station_id(spark, station_identifier)
q = f"""
WITH base AS (
SELECT
d.stationId,
gs.station_name,
TO_TIMESTAMP(CONCAT(d.date, LPAD(CAST(d.hour AS STRING), 2, '0')), 'yyyyMMddHH') AS hour_ts,
TO_DATE(d.date, 'yyyyMMdd') AS day_date,
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_in_year,
QUARTER(TO_DATE(d.date, 'yyyyMMdd')) AS quarter_in_year,
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
d.TT_TU AS temperature
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.stationId = {station_id}
AND d.TT_TU IS NOT NULL
AND d.TT_TU <> -999
),
rollup_base AS (
SELECT
stationId,
station_name,
hour_ts,
day_date,
month_in_year,
quarter_in_year,
year_value,
MIN(temperature) AS min_temp,
MAX(temperature) AS max_temp,
AVG(temperature) AS avg_temp
FROM base
GROUP BY stationId, station_name, ROLLUP(year_value, quarter_in_year, month_in_year, day_date, hour_ts)
)
SELECT
stationId,
station_name,
hour_ts,
day_date,
month_in_year,
quarter_in_year,
year_value,
CASE WHEN month_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(month_in_year AS STRING), 2, '0'), '-01')) END AS month_start_date,
CASE WHEN quarter_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(quarter_in_year * 3 - 2 AS STRING), 2, '0'), '-01')) END AS quarter_start_date,
CASE WHEN year_value IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-01-01')) END AS year_start_date,
min_temp,
max_temp,
avg_temp
FROM rollup_base
"""
rollup_df = spark.sql(q)
rollup_df.cache()
rollup_df.createOrReplaceTempView("station_rollup")
# e) Portfolio Wert Ende 2010
print("\ne) Portfolio Bewertung Ende 2010")
t0 = time.time()
q_last_price = """
SELECT symbol, close
FROM (
SELECT
symbol,
close,
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
FROM stocks
WHERE YEAR(date) = 2010
) tmp
WHERE rn = 1
"""
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren
q_val = """
SELECT
p.portfolioId,
SUM(h.amount * s.close) as portfolio_value_2010
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
JOIN stocks_2010_end s ON h.symbol = s.symbol
GROUP BY p.portfolioId
ORDER BY p.portfolioId
"""
spark.sql(q_val).show(5)
print(f"Zeit e): {time.time()-t0:.2f}s")
def _year_window(spark: SparkSession, years_back: int, station_id: int) -> tuple[int, int] | None:
stats = spark.sql(
f"SELECT MIN(year_value) AS min_year, MAX(year_value) AS max_year FROM station_rollup WHERE year_value IS NOT NULL AND stationId = {station_id}"
).collect()
if not stats or stats[0]["max_year"] is None:
return None
min_year = int(stats[0]["min_year"])
max_year = int(stats[0]["max_year"])
start_year = max(min_year, max_year - years_back + 1)
return start_year, max_year
def plot_station_rollup_levels(
spark: SparkSession,
station_identifier,
day_span_years: int = 3,
agg_span_years: int = 15,
) -> None:
"""Plot day, month, quarter, and year aggregates for the given station."""
station_id = resolve_station_id(spark, station_identifier)
needs_refresh = not spark.catalog.tableExists("station_rollup")
if not needs_refresh:
count = spark.sql(
f"SELECT COUNT(*) AS cnt FROM station_rollup WHERE stationId = {station_id}"
).collect()[0]["cnt"]
needs_refresh = count == 0
if needs_refresh:
build_station_rollup_for_station(spark, station_id)
day_window = _year_window(spark, day_span_years, station_id)
if day_window is None:
print("No data available for plotting")
return
month_window = _year_window(spark, agg_span_years, station_id)
if month_window is None:
print("No aggregated window available")
return
def _plot(query: str, figure_idx: int, title: str, x_col: str = "bucket_date") -> None:
pdf = spark.sql(query).toPandas()
if pdf.empty:
print(f"No data for {title}")
return
plt.figure(num=figure_idx)
plt.clf()
metrics = [
("min_temp", "Min", "#1f77b4"),
("avg_temp", "Avg", "#ff7f0e"),
("max_temp", "Max", "#2ca02c"),
]
for col, label, color in metrics:
if col in pdf:
plt.plot(pdf[x_col], pdf[col], label=label, color=color)
plt.title(title)
plt.xlabel("Datum")
plt.ylabel("Temperatur (°C)")
plt.legend()
plt.tight_layout()
plt.show()
day_start, day_end = day_window
q_day = f"""
SELECT day_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND hour_ts IS NULL
AND day_date IS NOT NULL
AND year_value BETWEEN {day_start} AND {day_end}
ORDER BY bucket_date
"""
_plot(q_day, 1, f"Tagesmittelwerte {day_start}-{day_end}")
agg_start, agg_end = month_window
q_month = f"""
SELECT month_start_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND day_date IS NULL
AND month_in_year IS NOT NULL
AND year_value BETWEEN {agg_start} AND {agg_end}
ORDER BY bucket_date
"""
_plot(q_month, 2, f"Monatsmittelwerte {agg_start}-{agg_end}")
q_quarter = f"""
SELECT quarter_start_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND month_in_year IS NULL
AND quarter_in_year IS NOT NULL
AND year_value BETWEEN {agg_start} AND {agg_end}
ORDER BY bucket_date
"""
_plot(q_quarter, 3, f"Quartalsmittelwerte {agg_start}-{agg_end}")
q_year = f"""
SELECT year_start_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND quarter_in_year IS NULL
AND year_value IS NOT NULL
ORDER BY bucket_date
"""
_plot(q_year, 4, "Jahresmittelwerte")
def create_tempmonat(spark: SparkSession) -> None:
"""Create cached temp table tempmonat with monthly aggregates per station."""
q = """
SELECT
d.stationId,
gs.station_name,
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
MIN(d.TT_TU) AS min_temp,
MAX(d.TT_TU) AS max_temp,
AVG(d.TT_TU) AS avg_temp
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
GROUP BY d.stationId, gs.station_name, YEAR(TO_DATE(d.date, 'yyyyMMdd')), MONTH(TO_DATE(d.date, 'yyyyMMdd'))
"""
monthly_df = spark.sql(q)
monthly_df.cache()
monthly_df.createOrReplaceTempView("tempmonat")
def rank_coldest_per_month_2015(spark: SparkSession):
"""Rank stations by coldest values per month for 2015 using tempmonat."""
return spark.sql(
"""
SELECT
stationId,
station_name,
year_value,
month_value,
min_temp,
max_temp,
avg_temp,
RANK() OVER (PARTITION BY month_value ORDER BY min_temp ASC) AS rank_min,
RANK() OVER (PARTITION BY month_value ORDER BY max_temp ASC) AS rank_max,
RANK() OVER (PARTITION BY month_value ORDER BY avg_temp ASC) AS rank_avg
FROM tempmonat
WHERE year_value = 2015
ORDER BY rank_min, month_value
"""
)
def rank_coldest_overall(spark: SparkSession):
"""Rank stations by coldest values over all months/years (no partition)."""
return spark.sql(
"""
SELECT
stationId,
station_name,
year_value,
month_value,
min_temp,
max_temp,
avg_temp,
RANK() OVER (ORDER BY min_temp ASC) AS rank_min,
RANK() OVER (ORDER BY max_temp ASC) AS rank_max,
RANK() OVER (ORDER BY avg_temp ASC) AS rank_avg
FROM tempmonat
ORDER BY rank_min
"""
)
def create_grouping_sets_overview(spark: SparkSession) -> None:
"""Compute grouping sets for requested aggregations and cache the result."""
q = """
WITH base AS (
SELECT
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
gs.bundesland,
gs.stationId,
gs.station_name,
d.TT_TU AS temperature
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
)
SELECT
year_value,
month_value,
bundesland,
stationId,
station_name,
MIN(temperature) AS min_temp,
MAX(temperature) AS max_temp,
AVG(temperature) AS avg_temp
FROM base
GROUP BY GROUPING SETS (
(year_value, bundesland),
(year_value, stationId, station_name, bundesland),
(month_value, bundesland)
)
"""
grouped_df = spark.sql(q)
grouped_df.cache()
grouped_df.createOrReplaceTempView("grouping_sets_stats")
def select_year_bundesland(spark: SparkSession):
return spark.sql(
"""
SELECT year_value, bundesland, min_temp, max_temp, avg_temp
FROM grouping_sets_stats
WHERE bundesland IS NOT NULL AND month_value IS NULL AND stationId IS NULL
ORDER BY year_value, bundesland
"""
)
def select_year_station(spark: SparkSession):
return spark.sql(
"""
SELECT year_value, stationId, station_name, min_temp, max_temp, avg_temp
FROM grouping_sets_stats
WHERE stationId IS NOT NULL AND month_value IS NULL
ORDER BY year_value, stationId
"""
)
def select_month_bundesland(spark: SparkSession):
return spark.sql(
"""
SELECT month_value, bundesland, min_temp, max_temp, avg_temp
FROM grouping_sets_stats
WHERE month_value IS NOT NULL AND year_value IS NULL
ORDER BY month_value, bundesland
"""
)
def main(scon, spark):
init_view_stations(spark)
# Aufgabe 11
task_11a_rollup(spark, station_name="Kempten")
task_11b_rank(spark)
task_11c_groupingsets(spark)
read_parquet_tables(spark)
build_station_rollup_for_station(spark, "kempten")
plot_station_rollup_levels(spark, "kempten")
# Aufgabe 12
init_view_stocks(spark)
task_12_stocks_analysis(spark)
create_tempmonat(spark)
print("Rangfolgen 2015 je Monat:")
rank_coldest_per_month_2015(spark).show(36, truncate=False)
print("Rangfolgen gesamt:")
rank_coldest_overall(spark).show(36, truncate=False)
if __name__ == '__main__':
main(scon, spark)
create_grouping_sets_overview(spark)
print("Jahr vs Bundesland:")
select_year_bundesland(spark).show(20, truncate=False)
print("Jahr vs Station:")
select_year_station(spark).show(20, truncate=False)
print("Monat vs Bundesland:")
select_month_bundesland(spark).show(20, truncate=False)
if __name__ == "__main__":
main(scon, spark)

276
Aufgabe 12/Aufgabe12.py Normal file
View File

@@ -0,0 +1,276 @@
from __future__ import annotations
from typing import Iterable, Sequence
from pyspark.sql import SparkSession, functions as F, types as T
from sparkstart import scon, spark
HDFSPATH = "hdfs://193.174.205.250:54310/"
_DATE_FALLBACK_EXPR = "COALESCE(date_value, TO_DATE(date_str), TO_DATE(date_str, 'yyyyMMdd'))"
def _resolve_column_name(columns: Sequence[str], candidates: Iterable[str]) -> str:
lowered = {col.lower(): col for col in columns}
for candidate in candidates:
match = lowered.get(candidate.lower())
if match:
return match
raise ValueError(f"None of the candidate columns {list(candidates)} exist in {columns}")
def _normalize_stocks_view(spark: SparkSession) -> None:
stocks_path = HDFSPATH + "stocks/stocks.parquet"
stocks_df = spark.read.parquet(stocks_path)
symbol_col = _resolve_column_name(stocks_df.columns, ("symbol", "ticker"))
date_col = _resolve_column_name(stocks_df.columns, ("date", "pricedate", "dt"))
close_col = _resolve_column_name(stocks_df.columns, ("close", "closeprice", "closingprice"))
stocks_df = (
stocks_df
.select(
F.col(symbol_col).alias("symbol"),
F.col(date_col).alias("raw_date"),
F.col(close_col).alias("close_raw"),
)
.withColumn("date_str", F.col("raw_date").cast("string"))
)
date_candidates = [
F.col("raw_date").cast("date"),
F.to_date("raw_date"),
F.to_date("date_str"),
F.to_date("date_str", "yyyyMMdd"),
F.to_date("date_str", "MM/dd/yyyy"),
]
stocks_df = (
stocks_df
.withColumn("date_value", F.coalesce(*date_candidates))
.withColumn("year_value", F.substring("date_str", 1, 4).cast("int"))
.withColumn("close_value", F.col("close_raw").cast("double"))
.select("symbol", "date_value", "date_str", "year_value", "close_value")
)
stocks_df.cache()
stocks_df.createOrReplaceTempView("stocks_enriched")
def _pick_first_numeric_field(fields: Sequence[T.StructField]) -> str:
numeric_types = (
T.ByteType,
T.ShortType,
T.IntegerType,
T.LongType,
T.FloatType,
T.DoubleType,
T.DecimalType,
)
for field in fields:
if isinstance(field.dataType, numeric_types):
return field.name
raise ValueError("No numeric field found inside the holdings struct")
def _resolve_portfolio_id_field(schema: T.StructType) -> str:
priority = ("portfolio_id", "portfolioid", "id")
lowered = {field.name.lower(): field.name for field in schema.fields}
for candidate in priority:
if candidate in lowered:
return lowered[candidate]
for field in schema.fields:
if not isinstance(field.dataType, (T.ArrayType, T.MapType)):
return field.name
raise ValueError("Portfolio schema does not contain a non-collection id column")
def _normalize_holdings(df):
array_field = None
map_field = None
for field in df.schema.fields:
if isinstance(field.dataType, T.ArrayType) and isinstance(field.dataType.elementType, T.StructType):
array_field = field
break
if isinstance(field.dataType, T.MapType) and isinstance(field.dataType.keyType, T.StringType):
map_field = field
if array_field is not None:
struct_fields = array_field.dataType.elementType.fields
symbol_field = _resolve_column_name([f.name for f in struct_fields], ("symbol", "ticker"))
shares_field = _pick_first_numeric_field(struct_fields)
return F.expr(
f"transform(`{array_field.name}`, x -> named_struct('symbol', x.`{symbol_field}`, 'shares', CAST(x.`{shares_field}` AS DOUBLE)))"
)
if map_field is not None and isinstance(map_field.dataType.valueType, (T.IntegerType, T.LongType, T.FloatType, T.DoubleType, T.DecimalType)):
return F.expr(
f"transform(map_entries(`{map_field.name}`), x -> named_struct('symbol', x.key, 'shares', CAST(x.value AS DOUBLE)))"
)
raise ValueError("Could not locate holdings column (array<struct> or map) in portfolio data")
def _normalize_portfolio_view(spark: SparkSession) -> None:
portfolio_path = HDFSPATH + "stocks/portfolio.parquet"
portfolio_df = spark.read.parquet(portfolio_path)
id_col = _resolve_portfolio_id_field(portfolio_df.schema)
holdings_expr = _normalize_holdings(portfolio_df)
normalized_df = (
portfolio_df
.select(
F.col(id_col).alias("portfolio_id"),
holdings_expr.alias("holdings"),
)
)
normalized_df.cache()
normalized_df.createOrReplaceTempView("portfolio")
spark.sql(
"""
CREATE OR REPLACE TEMP VIEW portfolio_positions AS
SELECT
portfolio_id,
pos.symbol AS symbol,
pos.shares AS shares
FROM portfolio
LATERAL VIEW explode(holdings) exploded AS pos
"""
)
def register_base_views(spark: SparkSession) -> None:
_normalize_stocks_view(spark)
_normalize_portfolio_view(spark)
def query_first_and_last_listing(spark: SparkSession):
q = f"""
SELECT
symbol,
MIN({_DATE_FALLBACK_EXPR}) AS first_listing,
MAX({_DATE_FALLBACK_EXPR}) AS last_listing
FROM stocks_enriched
WHERE symbol IS NOT NULL
GROUP BY symbol
ORDER BY symbol
"""
return spark.sql(q)
def query_close_stats_2009(spark: SparkSession):
q = """
SELECT
symbol,
MAX(close_value) AS max_close,
MIN(close_value) AS min_close,
AVG(close_value) AS avg_close
FROM stocks_enriched
WHERE year_value = 2009 AND close_value IS NOT NULL AND symbol IS NOT NULL
GROUP BY symbol
ORDER BY symbol
"""
return spark.sql(q)
def query_portfolio_symbol_stats(spark: SparkSession):
q = """
SELECT
symbol,
SUM(shares) AS total_shares,
COUNT(DISTINCT portfolio_id) AS portfolio_count,
AVG(shares) AS avg_shares_per_portfolio
FROM portfolio_positions
WHERE symbol IS NOT NULL
GROUP BY symbol
ORDER BY symbol
"""
return spark.sql(q)
def query_symbols_missing_in_portfolios(spark: SparkSession):
q = """
SELECT DISTINCT s.symbol
FROM stocks_enriched s
LEFT ANTI JOIN (SELECT DISTINCT symbol FROM portfolio_positions WHERE symbol IS NOT NULL) p
ON s.symbol = p.symbol
WHERE s.symbol IS NOT NULL
ORDER BY s.symbol
"""
return spark.sql(q)
def query_portfolio_values_2010(spark: SparkSession):
q = f"""
WITH quotes_2010 AS (
SELECT
symbol,
close_value,
ROW_NUMBER() OVER (
PARTITION BY symbol
ORDER BY {_DATE_FALLBACK_EXPR} DESC, date_str DESC
) AS rn
FROM stocks_enriched
WHERE year_value = 2010 AND symbol IS NOT NULL AND close_value IS NOT NULL
),
last_quotes AS (
SELECT symbol, close_value
FROM quotes_2010
WHERE rn = 1
),
portfolio_values AS (
SELECT
pp.portfolio_id,
SUM(pp.shares * lq.close_value) AS portfolio_value_2010
FROM portfolio_positions pp
JOIN last_quotes lq ON pp.symbol = lq.symbol
GROUP BY pp.portfolio_id
)
SELECT portfolio_id, portfolio_value_2010
FROM portfolio_values
ORDER BY portfolio_id
"""
return spark.sql(q)
def main(scon, spark):
register_base_views(spark)
print("(a) Erste und letzte Notierung je Symbol:")
query_first_and_last_listing(spark).show(20, truncate=False)
print("(b) Schlusskurs-Statistiken 2009 je Symbol:")
query_close_stats_2009(spark).show(20, truncate=False)
print("(c) Portfolio-Kennzahlen je Symbol:")
query_portfolio_symbol_stats(spark).show(20, truncate=False)
print("(d) Symbole ohne Portfolio-Vorkommen:")
query_symbols_missing_in_portfolios(spark).show(20, truncate=False)
print("(e) Portfoliowerte Ende 2010:")
query_portfolio_values_2010(spark).show(20, truncate=False)
if __name__ == "__main__":
main(scon, spark)

22
Aufgabe 12/sparkstart.py Normal file
View File

@@ -0,0 +1,22 @@
# -*- coding: utf-8 -*-
"""
Erzeugen einer Spark-Konfiguration
"""
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
# connect to cluster
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.set("spark.executor.memory", '32g')
conf.set("spark.driver.memory", '8g')
conf.set("spark.cores.max", "40")
scon = SparkContext(conf=conf)
spark = SparkSession \
.builder \
.appName("Python Spark SQL") \
.getOrCreate()