This commit is contained in:
2025-12-11 20:55:44 +01:00
parent d18e9823e5
commit 622a228fb7
4 changed files with 642 additions and 345 deletions

View File

@@ -5,7 +5,6 @@ import matplotlib.pyplot as plt
HDFSPATH = "hdfs://193.174.205.250:54310/" HDFSPATH = "hdfs://193.174.205.250:54310/"
def read_parquets(spark: SparkSession): def read_parquets(spark: SparkSession):
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet" stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet" products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"

View File

@@ -1,366 +1,366 @@
from __future__ import annotations
from sparkstart import scon, spark from sparkstart import scon, spark
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
import time
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd
HDFSPATH_STATIONS = "hdfs://193.174.205.250:54310/home/heiserervalentin/"
HDFSPATH_STOCKS = "hdfs://193.174.205.250:54310/stocks/"
def init_view_stations(spark):
"""Lädt die Stationsdaten für Aufgabe 11"""
s_path = HDFSPATH_STATIONS + "german_stations.parquet"
d_path = HDFSPATH_STATIONS + "german_stations_data.parquet"
spark.read.parquet(s_path).createOrReplaceTempView("german_stations")
spark.read.parquet(d_path).createOrReplaceTempView("german_stations_data")
def init_view_stocks(spark):
"""Lädt die Stocks-Daten für Aufgabe 12"""
# Hinweis: Pfade anpassen, falls sie im Cluster anders liegen
spark.read.parquet(HDFSPATH_STOCKS + "stocks.parquet").createOrReplaceTempView("stocks")
spark.read.parquet(HDFSPATH_STOCKS + "portfolio.parquet").createOrReplaceTempView("portfolio")
# ---------------------------------------------------------
# AUFGABE 11
# ---------------------------------------------------------
def task_11a_rollup(spark: SparkSession, station_name="Kempten"):
print(f"\n--- Aufgabe 11a: Rollup & Plotting für {station_name} ---")
start = time.time()
# 1. Station ID finden
sid_df = spark.sql(f"SELECT stationId FROM german_stations WHERE station_name LIKE '%{station_name}%'")
try:
sid = sid_df.collect()[0]['stationId']
except IndexError:
print(f"Station {station_name} nicht gefunden.")
return
# 2. Rollup Query vorbereiten
q_prep = f"""
SELECT
YEAR(date) as yr,
QUARTER(date) as qt,
MONTH(date) as mo,
DAY(date) as da,
TT_TU
FROM german_stations_data
WHERE stationId = {sid} AND TT_TU IS NOT NULL AND TT_TU > -50
"""
spark.sql(q_prep).createOrReplaceTempView("data_prep")
q_rollup = """
SELECT
yr, qt, mo, da,
MIN(TT_TU) as min_temp,
MAX(TT_TU) as max_temp,
AVG(TT_TU) as avg_temp,
-- Datums-Konstruktion für Plots
DATE(STRING(yr) || '-' || STRING(qt*3-2) || '-01') as qt_date,
MAKE_DATE(yr, mo, 1) as mo_date,
MAKE_DATE(yr, 1, 1) as yr_date,
MAKE_DATE(yr, mo, da) as da_date
FROM data_prep
GROUP BY ROLLUP(yr, qt, mo, da)
"""
df_rollup = spark.sql(q_rollup)
df_rollup.cache()
df_rollup.createOrReplaceTempView("station_rollup")
# Trigger Action for Cache & Time Measurement
count = df_rollup.count()
print(f"Rollup berechnet. Zeilen: {count}. Dauer: {time.time() - start:.2f}s")
input(">> 11a: Check Spark UI (Stages/Storage) jetzt. Enter für Plots...")
# Plot 1: Tageswerte (letzte 3 Jahre der Daten)
q_days = """
SELECT da_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NOT NULL
AND yr >= (SELECT MAX(yr) - 2 FROM station_rollup)
ORDER BY date
"""
pdf_days = spark.sql(q_days).toPandas()
plt.figure(1, figsize=(10, 5))
plt.plot(pdf_days['date'], pdf_days['avg_temp'], label='Daily Avg', linewidth=0.5)
plt.title(f"{station_name}: Daily Average (Last 3 Years)")
plt.xlabel('Date')
plt.ylabel('Temp °C')
plt.tight_layout()
plt.show()
# Plot 2: Monatswerte (10-20 Jahre)
q_months = """
SELECT mo_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NOT NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
ORDER BY date
"""
pdf_months = spark.sql(q_months).toPandas()
plt.figure(2, figsize=(10, 5))
plt.plot(pdf_months['date'], pdf_months['avg_temp'], color='green', label='Monthly Avg')
plt.title(f"{station_name}: Monthly Average (Last 20 Years)")
plt.xlabel('Date')
plt.ylabel('Temp °C')
plt.tight_layout()
plt.show()
# Plot 3: Quartalswerte
q_quarters = """
SELECT qt_date as date, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NOT NULL AND mo IS NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
ORDER BY date
"""
pdf_quarters = spark.sql(q_quarters).toPandas()
plt.figure(3, figsize=(10, 5))
plt.plot(pdf_quarters['date'], pdf_quarters['avg_temp'], color='orange', marker='o', linestyle='-', label='Quarterly Avg')
plt.title(f"{station_name}: Quarterly Average (Last 20 Years)")
plt.show()
# Plot 4: Jahreswerte
q_years = """
SELECT yr_date as date, min_temp, max_temp, avg_temp
FROM station_rollup
WHERE yr IS NOT NULL AND qt IS NULL AND mo IS NULL AND da IS NULL
AND yr >= (SELECT MAX(yr) - 20 FROM station_rollup)
ORDER BY date
"""
pdf_years = spark.sql(q_years).toPandas()
plt.figure(4, figsize=(10, 5))
plt.plot(pdf_years['date'], pdf_years['max_temp'], color='red', label='Max')
plt.plot(pdf_years['date'], pdf_years['avg_temp'], color='black', label='Avg')
plt.plot(pdf_years['date'], pdf_years['min_temp'], color='blue', label='Min')
plt.title(f"{station_name}: Yearly Aggregates (Last 20 Years)")
plt.legend()
plt.show()
def task_11b_rank(spark: SparkSession): HDFSPATH = "hdfs://193.174.205.250:54310/"
print("\n--- Aufgabe 11b: TempMonat Ranking ---")
start = time.time()
q_tempmonat = """
SELECT
d.stationId,
s.station_name,
SUBSTR(CAST(d.date AS STRING), 1, 4) as year,
SUBSTR(CAST(d.date AS STRING), 6, 2) as month,
MIN(d.TT_TU) as min_t,
MAX(d.TT_TU) as max_t,
AVG(d.TT_TU) as avg_t
FROM german_stations_data d
JOIN german_stations s ON d.stationId = s.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU > -50
GROUP BY d.stationId, s.station_name, year, month
"""
df_tm = spark.sql(q_tempmonat)
df_tm.createOrReplaceTempView("tempmonat")
# 1. Ranking Partitioniert nach Monat im Jahr 2015
print(" > Berechne Ranking für 2015 (partitioniert nach Monat)...")
q_rank_2015 = """
SELECT
month, station_name, min_t,
RANK() OVER (PARTITION BY month ORDER BY min_t ASC) as rank_min,
RANK() OVER (PARTITION BY month ORDER BY max_t ASC) as rank_max,
RANK() OVER (PARTITION BY month ORDER BY avg_t ASC) as rank_avg
FROM tempmonat
WHERE year = '2015'
ORDER BY rank_min, month
"""
spark.sql(q_rank_2015).show(10)
# 2. Globales Ranking (über alle Monate/Jahre hinweg)
print(" > Berechne Ranking global (kälteste Monate aller Zeiten)...")
q_rank_global = """
SELECT
year, month, station_name, min_t,
RANK() OVER (ORDER BY min_t ASC) as rank_min,
RANK() OVER (ORDER BY max_t ASC) as rank_max,
RANK() OVER (ORDER BY avg_t ASC) as rank_avg
FROM tempmonat
ORDER BY rank_min
"""
spark.sql(q_rank_global).show(10)
print(f"Dauer 11b: {time.time() - start:.2f}s")
input(">> 11b: Check Spark UI (Jobs/Stages). Enter...")
def task_11c_groupingsets(spark: SparkSession): def read_parquet_tables(spark: SparkSession) -> None:
print("\n--- Aufgabe 11c: Grouping Sets ---") """Load station master data and hourly measurements from parquet if needed."""
start = time.time() stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
q_prep = """ stations_df = spark.read.parquet(stations_path)
SELECT stations_df.createOrReplaceTempView("german_stations")
CAST(SUBSTR(CAST(d.date AS STRING), 1, 4) AS INT) as year, stations_df.cache()
CAST(SUBSTR(CAST(d.date AS STRING), 6, 2) AS INT) as month,
s.station_name,
s.bundesland,
d.TT_TU
FROM german_stations_data d
JOIN german_stations s ON d.stationId = s.stationId
WHERE d.TT_TU > -50
"""
spark.sql(q_prep).createOrReplaceTempView("gs_base")
q_sets = """ products_df = spark.read.parquet(products_path)
SELECT products_df.createOrReplaceTempView("german_stations_data")
year, products_df.cache()
month,
bundesland,
station_name,
MIN(TT_TU) as min_t, MAX(TT_TU) as max_t, AVG(TT_TU) as avg_t
FROM gs_base
GROUP BY GROUPING SETS (
(year, bundesland),
(year, station_name),
(month, bundesland)
)
"""
df_gs = spark.sql(q_sets)
df_gs.cache()
df_gs.createOrReplaceTempView("grouping_result")
# Action zum Cachen
df_gs.count()
print(f"Grouping Sets berechnet. Dauer: {time.time() - start:.2f}s")
print("Auswahl 1: Jahr & Bundesland")
spark.sql("SELECT year, bundesland, avg_t FROM grouping_result WHERE station_name IS NULL AND month IS NULL ORDER BY year DESC, bundesland").show(5)
print("Auswahl 2: Jahr & Station")
spark.sql("SELECT year, station_name, avg_t FROM grouping_result WHERE bundesland IS NULL AND month IS NULL ORDER BY year DESC, station_name").show(5)
print("Auswahl 3: Monat & Bundesland (Jahreszeitlicher Verlauf je Land)")
spark.sql("SELECT month, bundesland, avg_t FROM grouping_result WHERE year IS NULL AND station_name IS NULL ORDER BY bundesland, month").show(5)
input(">> 11c: Check Spark UI (Zugriffspläne/Storage). Enter...")
# --------------------------------------------------------- def _escape_like(value: str) -> str:
# AUFGABE 12 """Escape single quotes for safe SQL literal usage."""
# --------------------------------------------------------- return value.replace("'", "''")
def task_12_stocks_analysis(spark: SparkSession):
print("\n--- Aufgabe 12: Stocks & Portfolio ---")
# a) Erstes und letztes Datum je Symbol
print("a) Min/Max Datum pro Symbol")
t0 = time.time()
q_a = """
SELECT symbol, MIN(date) as first_date, MAX(date) as last_date
FROM stocks
GROUP BY symbol
ORDER BY symbol
"""
spark.sql(q_a).show(5)
print(f"Zeit a): {time.time()-t0:.2f}s")
# b) Aggregationen 2009 def resolve_station_id(spark: SparkSession, station_identifier) -> int:
print("\nb) High/Low/Avg Close 2009") """Resolve station id either from int input or fuzzy name search."""
t0 = time.time() if isinstance(station_identifier, int):
q_b = """ return station_identifier
SELECT symbol, MAX(close) as max_close, MIN(close) as min_close, AVG(close) as avg_close if isinstance(station_identifier, str) and station_identifier.strip().isdigit():
FROM stocks return int(station_identifier.strip())
WHERE YEAR(date) = 2009 if isinstance(station_identifier, str):
GROUP BY symbol needle = _escape_like(station_identifier.lower())
ORDER BY symbol q = (
""" "SELECT stationId FROM german_stations "
spark.sql(q_b).show(5) f"WHERE lower(station_name) LIKE '%{needle}%' ORDER BY station_name LIMIT 1"
print(f"Zeit b): {time.time()-t0:.2f}s") )
result = spark.sql(q).collect()
if not result:
raise ValueError(f"No station found for pattern '{station_identifier}'")
return int(result[0]["stationId"])
raise ValueError("station_identifier must be int or str")
# c) Lateral View (Explode Portfolio)
print("\nc) Lateral View: Aktien in Portfolios")
t0 = time.time()
q_c = """
SELECT
h.symbol,
SUM(h.amount) as total_shares,
COUNT(p.portfolioId) as num_portfolios,
AVG(h.amount) as avg_per_portfolio
FROM portfolio p
LATERAL VIEW explode(holdings) t AS h
GROUP BY h.symbol
ORDER BY h.symbol
"""
spark.sql(q_c).show(5)
print(f"Zeit c): {time.time()-t0:.2f}s")
# d) Symbole in keinem Portfolio (Anti Join) def build_station_rollup_for_station(spark: SparkSession, station_identifier) -> None:
print("\nd) Symbole ohne Portfolio") """Create rollup view with min/max/avg per hour/day/month/quarter/year."""
t0 = time.time() station_id = resolve_station_id(spark, station_identifier)
q_d = """ q = f"""
SELECT DISTINCT s.symbol WITH base AS (
FROM stocks s SELECT
LEFT ANTI JOIN ( d.stationId,
SELECT DISTINCT h.symbol gs.station_name,
FROM portfolio p TO_TIMESTAMP(CONCAT(d.date, LPAD(CAST(d.hour AS STRING), 2, '0')), 'yyyyMMddHH') AS hour_ts,
LATERAL VIEW explode(holdings) t AS h TO_DATE(d.date, 'yyyyMMdd') AS day_date,
) p_sym ON s.symbol = p_sym.symbol MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_in_year,
ORDER BY s.symbol QUARTER(TO_DATE(d.date, 'yyyyMMdd')) AS quarter_in_year,
""" YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
spark.sql(q_d).show(5) d.TT_TU AS temperature
print(f"Zeit d): {time.time()-t0:.2f}s") FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
input(">> 12 a-d fertig. Check UI. Enter für e)...") WHERE d.stationId = {station_id}
AND d.TT_TU IS NOT NULL
AND d.TT_TU <> -999
),
rollup_base AS (
SELECT
stationId,
station_name,
hour_ts,
day_date,
month_in_year,
quarter_in_year,
year_value,
MIN(temperature) AS min_temp,
MAX(temperature) AS max_temp,
AVG(temperature) AS avg_temp
FROM base
GROUP BY stationId, station_name, ROLLUP(year_value, quarter_in_year, month_in_year, day_date, hour_ts)
)
SELECT
stationId,
station_name,
hour_ts,
day_date,
month_in_year,
quarter_in_year,
year_value,
CASE WHEN month_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(month_in_year AS STRING), 2, '0'), '-01')) END AS month_start_date,
CASE WHEN quarter_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(quarter_in_year * 3 - 2 AS STRING), 2, '0'), '-01')) END AS quarter_start_date,
CASE WHEN year_value IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-01-01')) END AS year_start_date,
min_temp,
max_temp,
avg_temp
FROM rollup_base
"""
rollup_df = spark.sql(q)
rollup_df.cache()
rollup_df.createOrReplaceTempView("station_rollup")
# e) Portfolio Wert Ende 2010
print("\ne) Portfolio Bewertung Ende 2010")
t0 = time.time()
q_last_price = """
SELECT symbol, close
FROM (
SELECT
symbol,
close,
ROW_NUMBER() OVER (PARTITION BY symbol ORDER BY date DESC) as rn
FROM stocks
WHERE YEAR(date) = 2010
) tmp
WHERE rn = 1
"""
spark.sql(q_last_price).createOrReplaceTempView("stocks_2010_end")
# Schritt 2: Portfolio explodieren, mit Preis joinen, berechnen, summieren def _year_window(spark: SparkSession, years_back: int, station_id: int) -> tuple[int, int] | None:
q_val = """ stats = spark.sql(
SELECT f"SELECT MIN(year_value) AS min_year, MAX(year_value) AS max_year FROM station_rollup WHERE year_value IS NOT NULL AND stationId = {station_id}"
p.portfolioId, ).collect()
SUM(h.amount * s.close) as portfolio_value_2010 if not stats or stats[0]["max_year"] is None:
FROM portfolio p return None
LATERAL VIEW explode(holdings) t AS h min_year = int(stats[0]["min_year"])
JOIN stocks_2010_end s ON h.symbol = s.symbol max_year = int(stats[0]["max_year"])
GROUP BY p.portfolioId start_year = max(min_year, max_year - years_back + 1)
ORDER BY p.portfolioId return start_year, max_year
"""
spark.sql(q_val).show(5)
print(f"Zeit e): {time.time()-t0:.2f}s") def plot_station_rollup_levels(
spark: SparkSession,
station_identifier,
day_span_years: int = 3,
agg_span_years: int = 15,
) -> None:
"""Plot day, month, quarter, and year aggregates for the given station."""
station_id = resolve_station_id(spark, station_identifier)
needs_refresh = not spark.catalog.tableExists("station_rollup")
if not needs_refresh:
count = spark.sql(
f"SELECT COUNT(*) AS cnt FROM station_rollup WHERE stationId = {station_id}"
).collect()[0]["cnt"]
needs_refresh = count == 0
if needs_refresh:
build_station_rollup_for_station(spark, station_id)
day_window = _year_window(spark, day_span_years, station_id)
if day_window is None:
print("No data available for plotting")
return
month_window = _year_window(spark, agg_span_years, station_id)
if month_window is None:
print("No aggregated window available")
return
def _plot(query: str, figure_idx: int, title: str, x_col: str = "bucket_date") -> None:
pdf = spark.sql(query).toPandas()
if pdf.empty:
print(f"No data for {title}")
return
plt.figure(num=figure_idx)
plt.clf()
metrics = [
("min_temp", "Min", "#1f77b4"),
("avg_temp", "Avg", "#ff7f0e"),
("max_temp", "Max", "#2ca02c"),
]
for col, label, color in metrics:
if col in pdf:
plt.plot(pdf[x_col], pdf[col], label=label, color=color)
plt.title(title)
plt.xlabel("Datum")
plt.ylabel("Temperatur (°C)")
plt.legend()
plt.tight_layout()
plt.show()
day_start, day_end = day_window
q_day = f"""
SELECT day_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND hour_ts IS NULL
AND day_date IS NOT NULL
AND year_value BETWEEN {day_start} AND {day_end}
ORDER BY bucket_date
"""
_plot(q_day, 1, f"Tagesmittelwerte {day_start}-{day_end}")
agg_start, agg_end = month_window
q_month = f"""
SELECT month_start_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND day_date IS NULL
AND month_in_year IS NOT NULL
AND year_value BETWEEN {agg_start} AND {agg_end}
ORDER BY bucket_date
"""
_plot(q_month, 2, f"Monatsmittelwerte {agg_start}-{agg_end}")
q_quarter = f"""
SELECT quarter_start_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND month_in_year IS NULL
AND quarter_in_year IS NOT NULL
AND year_value BETWEEN {agg_start} AND {agg_end}
ORDER BY bucket_date
"""
_plot(q_quarter, 3, f"Quartalsmittelwerte {agg_start}-{agg_end}")
q_year = f"""
SELECT year_start_date AS bucket_date, min_temp, avg_temp, max_temp
FROM station_rollup
WHERE stationId = {station_id}
AND quarter_in_year IS NULL
AND year_value IS NOT NULL
ORDER BY bucket_date
"""
_plot(q_year, 4, "Jahresmittelwerte")
def create_tempmonat(spark: SparkSession) -> None:
"""Create cached temp table tempmonat with monthly aggregates per station."""
q = """
SELECT
d.stationId,
gs.station_name,
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
MIN(d.TT_TU) AS min_temp,
MAX(d.TT_TU) AS max_temp,
AVG(d.TT_TU) AS avg_temp
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
GROUP BY d.stationId, gs.station_name, YEAR(TO_DATE(d.date, 'yyyyMMdd')), MONTH(TO_DATE(d.date, 'yyyyMMdd'))
"""
monthly_df = spark.sql(q)
monthly_df.cache()
monthly_df.createOrReplaceTempView("tempmonat")
def rank_coldest_per_month_2015(spark: SparkSession):
"""Rank stations by coldest values per month for 2015 using tempmonat."""
return spark.sql(
"""
SELECT
stationId,
station_name,
year_value,
month_value,
min_temp,
max_temp,
avg_temp,
RANK() OVER (PARTITION BY month_value ORDER BY min_temp ASC) AS rank_min,
RANK() OVER (PARTITION BY month_value ORDER BY max_temp ASC) AS rank_max,
RANK() OVER (PARTITION BY month_value ORDER BY avg_temp ASC) AS rank_avg
FROM tempmonat
WHERE year_value = 2015
ORDER BY rank_min, month_value
"""
)
def rank_coldest_overall(spark: SparkSession):
"""Rank stations by coldest values over all months/years (no partition)."""
return spark.sql(
"""
SELECT
stationId,
station_name,
year_value,
month_value,
min_temp,
max_temp,
avg_temp,
RANK() OVER (ORDER BY min_temp ASC) AS rank_min,
RANK() OVER (ORDER BY max_temp ASC) AS rank_max,
RANK() OVER (ORDER BY avg_temp ASC) AS rank_avg
FROM tempmonat
ORDER BY rank_min
"""
)
def create_grouping_sets_overview(spark: SparkSession) -> None:
"""Compute grouping sets for requested aggregations and cache the result."""
q = """
WITH base AS (
SELECT
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
gs.bundesland,
gs.stationId,
gs.station_name,
d.TT_TU AS temperature
FROM german_stations_data d
JOIN german_stations gs ON d.stationId = gs.stationId
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
)
SELECT
year_value,
month_value,
bundesland,
stationId,
station_name,
MIN(temperature) AS min_temp,
MAX(temperature) AS max_temp,
AVG(temperature) AS avg_temp
FROM base
GROUP BY GROUPING SETS (
(year_value, bundesland),
(year_value, stationId, station_name, bundesland),
(month_value, bundesland)
)
"""
grouped_df = spark.sql(q)
grouped_df.cache()
grouped_df.createOrReplaceTempView("grouping_sets_stats")
def select_year_bundesland(spark: SparkSession):
return spark.sql(
"""
SELECT year_value, bundesland, min_temp, max_temp, avg_temp
FROM grouping_sets_stats
WHERE bundesland IS NOT NULL AND month_value IS NULL AND stationId IS NULL
ORDER BY year_value, bundesland
"""
)
def select_year_station(spark: SparkSession):
return spark.sql(
"""
SELECT year_value, stationId, station_name, min_temp, max_temp, avg_temp
FROM grouping_sets_stats
WHERE stationId IS NOT NULL AND month_value IS NULL
ORDER BY year_value, stationId
"""
)
def select_month_bundesland(spark: SparkSession):
return spark.sql(
"""
SELECT month_value, bundesland, min_temp, max_temp, avg_temp
FROM grouping_sets_stats
WHERE month_value IS NOT NULL AND year_value IS NULL
ORDER BY month_value, bundesland
"""
)
def main(scon, spark): def main(scon, spark):
init_view_stations(spark) read_parquet_tables(spark)
build_station_rollup_for_station(spark, "kempten")
# Aufgabe 11 plot_station_rollup_levels(spark, "kempten")
task_11a_rollup(spark, station_name="Kempten")
task_11b_rank(spark)
task_11c_groupingsets(spark)
# Aufgabe 12 create_tempmonat(spark)
init_view_stocks(spark) print("Rangfolgen 2015 je Monat:")
task_12_stocks_analysis(spark) rank_coldest_per_month_2015(spark).show(36, truncate=False)
print("Rangfolgen gesamt:")
rank_coldest_overall(spark).show(36, truncate=False)
if __name__ == '__main__': create_grouping_sets_overview(spark)
main(scon, spark) print("Jahr vs Bundesland:")
select_year_bundesland(spark).show(20, truncate=False)
print("Jahr vs Station:")
select_year_station(spark).show(20, truncate=False)
print("Monat vs Bundesland:")
select_month_bundesland(spark).show(20, truncate=False)
if __name__ == "__main__":
main(scon, spark)

276
Aufgabe 12/Aufgabe12.py Normal file
View File

@@ -0,0 +1,276 @@
from __future__ import annotations
from typing import Iterable, Sequence
from pyspark.sql import SparkSession, functions as F, types as T
from sparkstart import scon, spark
HDFSPATH = "hdfs://193.174.205.250:54310/"
_DATE_FALLBACK_EXPR = "COALESCE(date_value, TO_DATE(date_str), TO_DATE(date_str, 'yyyyMMdd'))"
def _resolve_column_name(columns: Sequence[str], candidates: Iterable[str]) -> str:
lowered = {col.lower(): col for col in columns}
for candidate in candidates:
match = lowered.get(candidate.lower())
if match:
return match
raise ValueError(f"None of the candidate columns {list(candidates)} exist in {columns}")
def _normalize_stocks_view(spark: SparkSession) -> None:
stocks_path = HDFSPATH + "stocks/stocks.parquet"
stocks_df = spark.read.parquet(stocks_path)
symbol_col = _resolve_column_name(stocks_df.columns, ("symbol", "ticker"))
date_col = _resolve_column_name(stocks_df.columns, ("date", "pricedate", "dt"))
close_col = _resolve_column_name(stocks_df.columns, ("close", "closeprice", "closingprice"))
stocks_df = (
stocks_df
.select(
F.col(symbol_col).alias("symbol"),
F.col(date_col).alias("raw_date"),
F.col(close_col).alias("close_raw"),
)
.withColumn("date_str", F.col("raw_date").cast("string"))
)
date_candidates = [
F.col("raw_date").cast("date"),
F.to_date("raw_date"),
F.to_date("date_str"),
F.to_date("date_str", "yyyyMMdd"),
F.to_date("date_str", "MM/dd/yyyy"),
]
stocks_df = (
stocks_df
.withColumn("date_value", F.coalesce(*date_candidates))
.withColumn("year_value", F.substring("date_str", 1, 4).cast("int"))
.withColumn("close_value", F.col("close_raw").cast("double"))
.select("symbol", "date_value", "date_str", "year_value", "close_value")
)
stocks_df.cache()
stocks_df.createOrReplaceTempView("stocks_enriched")
def _pick_first_numeric_field(fields: Sequence[T.StructField]) -> str:
numeric_types = (
T.ByteType,
T.ShortType,
T.IntegerType,
T.LongType,
T.FloatType,
T.DoubleType,
T.DecimalType,
)
for field in fields:
if isinstance(field.dataType, numeric_types):
return field.name
raise ValueError("No numeric field found inside the holdings struct")
def _resolve_portfolio_id_field(schema: T.StructType) -> str:
priority = ("portfolio_id", "portfolioid", "id")
lowered = {field.name.lower(): field.name for field in schema.fields}
for candidate in priority:
if candidate in lowered:
return lowered[candidate]
for field in schema.fields:
if not isinstance(field.dataType, (T.ArrayType, T.MapType)):
return field.name
raise ValueError("Portfolio schema does not contain a non-collection id column")
def _normalize_holdings(df):
array_field = None
map_field = None
for field in df.schema.fields:
if isinstance(field.dataType, T.ArrayType) and isinstance(field.dataType.elementType, T.StructType):
array_field = field
break
if isinstance(field.dataType, T.MapType) and isinstance(field.dataType.keyType, T.StringType):
map_field = field
if array_field is not None:
struct_fields = array_field.dataType.elementType.fields
symbol_field = _resolve_column_name([f.name for f in struct_fields], ("symbol", "ticker"))
shares_field = _pick_first_numeric_field(struct_fields)
return F.expr(
f"transform(`{array_field.name}`, x -> named_struct('symbol', x.`{symbol_field}`, 'shares', CAST(x.`{shares_field}` AS DOUBLE)))"
)
if map_field is not None and isinstance(map_field.dataType.valueType, (T.IntegerType, T.LongType, T.FloatType, T.DoubleType, T.DecimalType)):
return F.expr(
f"transform(map_entries(`{map_field.name}`), x -> named_struct('symbol', x.key, 'shares', CAST(x.value AS DOUBLE)))"
)
raise ValueError("Could not locate holdings column (array<struct> or map) in portfolio data")
def _normalize_portfolio_view(spark: SparkSession) -> None:
portfolio_path = HDFSPATH + "stocks/portfolio.parquet"
portfolio_df = spark.read.parquet(portfolio_path)
id_col = _resolve_portfolio_id_field(portfolio_df.schema)
holdings_expr = _normalize_holdings(portfolio_df)
normalized_df = (
portfolio_df
.select(
F.col(id_col).alias("portfolio_id"),
holdings_expr.alias("holdings"),
)
)
normalized_df.cache()
normalized_df.createOrReplaceTempView("portfolio")
spark.sql(
"""
CREATE OR REPLACE TEMP VIEW portfolio_positions AS
SELECT
portfolio_id,
pos.symbol AS symbol,
pos.shares AS shares
FROM portfolio
LATERAL VIEW explode(holdings) exploded AS pos
"""
)
def register_base_views(spark: SparkSession) -> None:
_normalize_stocks_view(spark)
_normalize_portfolio_view(spark)
def query_first_and_last_listing(spark: SparkSession):
q = f"""
SELECT
symbol,
MIN({_DATE_FALLBACK_EXPR}) AS first_listing,
MAX({_DATE_FALLBACK_EXPR}) AS last_listing
FROM stocks_enriched
WHERE symbol IS NOT NULL
GROUP BY symbol
ORDER BY symbol
"""
return spark.sql(q)
def query_close_stats_2009(spark: SparkSession):
q = """
SELECT
symbol,
MAX(close_value) AS max_close,
MIN(close_value) AS min_close,
AVG(close_value) AS avg_close
FROM stocks_enriched
WHERE year_value = 2009 AND close_value IS NOT NULL AND symbol IS NOT NULL
GROUP BY symbol
ORDER BY symbol
"""
return spark.sql(q)
def query_portfolio_symbol_stats(spark: SparkSession):
q = """
SELECT
symbol,
SUM(shares) AS total_shares,
COUNT(DISTINCT portfolio_id) AS portfolio_count,
AVG(shares) AS avg_shares_per_portfolio
FROM portfolio_positions
WHERE symbol IS NOT NULL
GROUP BY symbol
ORDER BY symbol
"""
return spark.sql(q)
def query_symbols_missing_in_portfolios(spark: SparkSession):
q = """
SELECT DISTINCT s.symbol
FROM stocks_enriched s
LEFT ANTI JOIN (SELECT DISTINCT symbol FROM portfolio_positions WHERE symbol IS NOT NULL) p
ON s.symbol = p.symbol
WHERE s.symbol IS NOT NULL
ORDER BY s.symbol
"""
return spark.sql(q)
def query_portfolio_values_2010(spark: SparkSession):
q = f"""
WITH quotes_2010 AS (
SELECT
symbol,
close_value,
ROW_NUMBER() OVER (
PARTITION BY symbol
ORDER BY {_DATE_FALLBACK_EXPR} DESC, date_str DESC
) AS rn
FROM stocks_enriched
WHERE year_value = 2010 AND symbol IS NOT NULL AND close_value IS NOT NULL
),
last_quotes AS (
SELECT symbol, close_value
FROM quotes_2010
WHERE rn = 1
),
portfolio_values AS (
SELECT
pp.portfolio_id,
SUM(pp.shares * lq.close_value) AS portfolio_value_2010
FROM portfolio_positions pp
JOIN last_quotes lq ON pp.symbol = lq.symbol
GROUP BY pp.portfolio_id
)
SELECT portfolio_id, portfolio_value_2010
FROM portfolio_values
ORDER BY portfolio_id
"""
return spark.sql(q)
def main(scon, spark):
register_base_views(spark)
print("(a) Erste und letzte Notierung je Symbol:")
query_first_and_last_listing(spark).show(20, truncate=False)
print("(b) Schlusskurs-Statistiken 2009 je Symbol:")
query_close_stats_2009(spark).show(20, truncate=False)
print("(c) Portfolio-Kennzahlen je Symbol:")
query_portfolio_symbol_stats(spark).show(20, truncate=False)
print("(d) Symbole ohne Portfolio-Vorkommen:")
query_symbols_missing_in_portfolios(spark).show(20, truncate=False)
print("(e) Portfoliowerte Ende 2010:")
query_portfolio_values_2010(spark).show(20, truncate=False)
if __name__ == "__main__":
main(scon, spark)

22
Aufgabe 12/sparkstart.py Normal file
View File

@@ -0,0 +1,22 @@
# -*- coding: utf-8 -*-
"""
Erzeugen einer Spark-Konfiguration
"""
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
# connect to cluster
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.set("spark.executor.memory", '32g')
conf.set("spark.driver.memory", '8g')
conf.set("spark.cores.max", "40")
scon = SparkContext(conf=conf)
spark = SparkSession \
.builder \
.appName("Python Spark SQL") \
.getOrCreate()