Files
BigData/Aufgabe 10/Aufgabe10.py
2025-11-28 12:14:02 +01:00

210 lines
6.7 KiB
Python

from sparkstart import scon, spark
import ghcnd_stations
import matplotlib.pyplot as plt
import time
# a) Scatterplot: alle Stationen (lon/lat)
def plot_all_stations(spark):
q = """
SELECT stationname, latitude, longitude
FROM cdc_stations
WHERE latitude IS NOT NULL AND longitude IS NOT NULL
"""
t0 = time.time()
rows = spark.sql(q).collect()
t1 = time.time()
print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Rows: {len(rows)}")
lats = [r['latitude'] for r in rows]
lons = [r['longitude'] for r in rows]
names = [r['stationname'] for r in rows]
plt.figure(figsize=(8,6))
plt.scatter(lons, lats, s=10, alpha=0.6)
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Alle CDC-Stationen (Scatter)')
plt.grid(True)
plt.show()
# b) Scatterplot: Stationsdauer in Jahren als Marker-Size
def plot_station_duration(spark, size_factor=20):
q = """
SELECT
stationname,
latitude,
longitude,
(CAST(CASE WHEN length(to_date) >= 4 THEN substr(to_date,1,4) ELSE year(current_date()) END AS INT)
- CAST(substr(from_date,1,4) AS INT)) AS years
FROM cdc_stations
WHERE latitude IS NOT NULL AND longitude IS NOT NULL
"""
t0 = time.time()
rows = spark.sql(q).collect()
t1 = time.time()
print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Rows: {len(rows)}")
lats = [r['latitude'] for r in rows]
lons = [r['longitude'] for r in rows]
years = [r['years'] if r['years'] is not None else 0 for r in rows]
sizes = [max(5, (y+1) * size_factor) for y in years]
plt.figure(figsize=(8,6))
plt.scatter(lons, lats, s=sizes, alpha=0.6)
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('CDC-Stationen: Dauer der Verfuegbarkeit (Größe ~ Jahre)')
plt.grid(True)
plt.show()
def plot_frost_distribution_year(spark, year):
q = f"""
WITH daily_max AS (
SELECT stationid, date, MAX(tt_tu) AS max_temp
FROM cdc_hourly
WHERE length(date) >= 8 AND substr(date,1,4) = '{year}'
GROUP BY stationid, date
),
station_frost AS (
SELECT dm.stationid, SUM(CASE WHEN dm.max_temp < 0 THEN 1 ELSE 0 END) AS frostdays
FROM daily_max dm
GROUP BY dm.stationid
)
SELECT sf.frostdays, COUNT(*) AS stations
FROM station_frost sf
GROUP BY sf.frostdays
ORDER BY sf.frostdays
"""
t0 = time.time()
rows = spark.sql(q).collect()
t1 = time.time()
print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Distinct frostdays: {len(rows)}")
x = [r['frostdays'] for r in rows]
y = [r['stations'] for r in rows]
plt.figure(figsize=(8,5))
plt.bar(x, y)
plt.xlabel('Anzahl Frosttage im Jahr ' + str(year))
plt.ylabel('Anzahl Stationen')
plt.title(f'Verteilung der Frosttage pro Station im Jahr {year}')
plt.grid(True)
plt.show()
# c2) Frosttage Zeitreihe für eine Station mit 5- und 20-Jahres Durchschnitt (SQL window)
def plot_station_frost_timeseries(spark, station_name):
q = f"""
WITH daily_max AS (
SELECT stationid, date, MAX(tt_tu) AS max_temp
FROM cdc_hourly
GROUP BY stationid, date
),
yearly AS (
SELECT
dm.stationid,
CAST(substr(dm.date,1,4) AS INT) AS year,
SUM(CASE WHEN dm.max_temp < 0 THEN 1 ELSE 0 END) AS frostdays
FROM daily_max dm
GROUP BY dm.stationid, CAST(substr(dm.date,1,4) AS INT)
),
station_yearly AS (
SELECT
y.year,
y.frostdays,
AVG(y.frostdays) OVER (ORDER BY y.year ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg5,
AVG(y.frostdays) OVER (ORDER BY y.year ROWS BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg20
FROM yearly y
JOIN cdc_stations s ON y.stationid = s.stationid
WHERE trim(upper(s.stationname)) = '{station_name.upper()}'
ORDER BY y.year
)
SELECT * FROM station_yearly
"""
t0 = time.time()
rows = spark.sql(q).collect()
t1 = time.time()
print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Years: {len(rows)}")
if not rows:
print(f"Keine Daten f\u00fcr Station '{station_name}'.")
return
years = [r['year'] for r in rows]
frostdays = [r['frostdays'] for r in rows]
avg5 = [r['avg5'] for r in rows]
avg20 = [r['avg20'] for r in rows]
plt.figure(figsize=(10,5))
plt.plot(years, frostdays, label='Frosttage (Jahr)')
plt.plot(years, avg5, label='5-Jahres-Durchschnitt')
plt.plot(years, avg20, label='20-Jahres-Durchschnitt')
plt.xlabel('Jahr')
plt.ylabel('Anzahl Frosttage')
plt.title(f'Frosttage f\u00fcr Station {station_name}')
plt.legend()
plt.grid(True)
plt.show()
# d) Korrelation Hoehe vs. Frosttage pro Jahr
def plot_height_frost_correlation(spark):
q = """
WITH daily_max AS (
SELECT stationid, date, MAX(tt_tu) AS max_temp
FROM cdc_hourly
GROUP BY stationid, date
),
yearly AS (
SELECT
dm.stationid,
CAST(substr(dm.date,1,4) AS INT) AS year,
SUM(CASE WHEN dm.max_temp < 0 THEN 1 ELSE 0 END) AS frostdays
FROM daily_max dm
GROUP BY dm.stationid, CAST(substr(dm.date,1,4) AS INT)
),
joined AS (
SELECT y.year, s.height, y.frostdays
FROM yearly y
JOIN cdc_stations s ON y.stationid = s.stationid
),
yearly_corr AS (
SELECT year, corr(height, frostdays) AS corr
FROM joined
GROUP BY year
ORDER BY year
)
SELECT year, corr FROM yearly_corr WHERE corr IS NOT NULL
"""
t0 = time.time()
rows = spark.sql(q).collect()
t1 = time.time()
print(f"Ausfuehrungszeit (SQL): {t1 - t0:.3f}s -- Years with corr: {len(rows)}")
if not rows:
print("Keine Korrelationsdaten verfügbar.")
return
years = [r['year'] for r in rows]
corr = [r['corr'] for r in rows]
plt.figure(figsize=(10,5))
plt.bar(years, corr)
plt.xlabel('Jahr')
plt.ylabel('Korrelationskoeffizient (height vs frostdays)')
plt.title('Korrelation Hoehe vs. Frosttage pro Jahr')
plt.grid(True)
plt.show()
if __name__ == '__main__':
ghcnd_stations.read_ghcnd_from_parquet(spark)
plot_all_stations(spark)
plot_station_duration(spark)
plot_frost_distribution_year(spark, '2010')
plot_station_frost_timeseries(spark, 'KEMPTEN')
plot_height_frost_correlation(spark)
pass