mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-13 02:49:32 +01:00
Compare commits
7 Commits
90524173f4
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 622a228fb7 | |||
| d18e9823e5 | |||
| 2b26188647 | |||
| f89d39d420 | |||
| de3782d570 | |||
| c072850289 | |||
| 296d1c8978 |
195
Aufgabe 10/Aufgabe10.py
Normal file
195
Aufgabe 10/Aufgabe10.py
Normal file
@@ -0,0 +1,195 @@
|
||||
from sparkstart import scon, spark
|
||||
from pyspark.sql import SparkSession
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
def read_parquets(spark: SparkSession):
|
||||
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||
|
||||
stations_df = spark.read.parquet(stations_path)
|
||||
stations_df.createOrReplaceTempView("german_stations")
|
||||
|
||||
products_df = spark.read.parquet(products_path)
|
||||
products_df.createOrReplaceTempView("german_stations_data")
|
||||
|
||||
stations_df.cache()
|
||||
products_df.cache()
|
||||
|
||||
|
||||
def plot_all_stations(spark: SparkSession):
|
||||
q = "SELECT geo_laenge AS lon, geo_breite AS lat FROM german_stations WHERE geo_laenge IS NOT NULL AND geo_breite IS NOT NULL"
|
||||
df = spark.sql(q)
|
||||
|
||||
pdf = df.toPandas()
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.scatter(pdf.lon, pdf.lat, s=6, color='red', marker='.')
|
||||
plt.xlabel('Longitude')
|
||||
plt.ylabel('Latitude')
|
||||
plt.title('All Stations (locations)')
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def duration_circle_size(spark: SparkSession):
|
||||
q = (
|
||||
"SELECT stationId, geo_laenge AS lon, geo_breite AS lat, "
|
||||
"(CAST(SUBSTR(bis_datum,1,4) AS INT) - CAST(SUBSTR(von_datum,1,4) AS INT)) AS duration_years "
|
||||
"FROM german_stations "
|
||||
"WHERE TRIM(von_datum)<>'' AND TRIM(bis_datum)<>''"
|
||||
)
|
||||
df = spark.sql(q)
|
||||
|
||||
pdf = df.toPandas()
|
||||
|
||||
pdf['duration_years'] = pdf['duration_years'].fillna(0).astype(int)
|
||||
sizes = (pdf['duration_years'].clip(lower=0) + 1) * 6
|
||||
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.scatter(pdf.lon, pdf.lat, s=sizes, alpha=0.6, c=pdf['duration_years'], cmap='viridis')
|
||||
plt.colorbar(label='Duration (years)')
|
||||
plt.xlabel('Longitude')
|
||||
plt.ylabel('Latitude')
|
||||
plt.title('Stations with duration (years) as marker size')
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def compute_daily_and_yearly_frosts(spark: SparkSession):
|
||||
q_daily_max = (
|
||||
"SELECT stationId, date, SUBSTR(CAST(date AS STRING),1,4) AS year, MAX(TT_TU) AS max_temp "
|
||||
"FROM german_stations_data "
|
||||
"WHERE TT_TU IS NOT NULL AND TT_TU > -50 AND TT_TU < 60 "
|
||||
"GROUP BY stationId, date"
|
||||
)
|
||||
daily_max = spark.sql(q_daily_max)
|
||||
daily_max.createOrReplaceTempView('daily_max')
|
||||
|
||||
# mark a day as frost if max_temp < 0
|
||||
q_daily_frost = (
|
||||
"SELECT stationId, year, CASE WHEN max_temp < 0 THEN 1 ELSE 0 END AS is_frost "
|
||||
"FROM daily_max"
|
||||
)
|
||||
daily_frost = spark.sql(q_daily_frost)
|
||||
daily_frost.createOrReplaceTempView('daily_frost')
|
||||
|
||||
# yearly frostdays per station
|
||||
q_station_year = (
|
||||
"SELECT stationId, year, SUM(is_frost) AS frost_days "
|
||||
"FROM daily_frost GROUP BY stationId, year"
|
||||
)
|
||||
station_year_frost = spark.sql(q_station_year)
|
||||
station_year_frost.createOrReplaceTempView('station_year_frost')
|
||||
|
||||
|
||||
def frost_analysis(spark: SparkSession, year=2024, station_name_matches=('kempten',)):
|
||||
compute_daily_and_yearly_frosts(spark)
|
||||
|
||||
q_hist = (
|
||||
f"SELECT frost_days, COUNT(*) AS station_count "
|
||||
f"FROM station_year_frost WHERE year = '{year}' GROUP BY frost_days ORDER BY frost_days"
|
||||
)
|
||||
hist_df = spark.sql(q_hist)
|
||||
|
||||
hist_pdf = hist_df.toPandas()
|
||||
|
||||
if hist_pdf.empty:
|
||||
print(f"No frost data found for year {year}. Trying to find available years...")
|
||||
q_all = "SELECT frost_days, COUNT(*) AS station_count FROM station_year_frost GROUP BY frost_days ORDER BY frost_days"
|
||||
hist_pdf = spark.sql(q_all).toPandas()
|
||||
if hist_pdf.empty:
|
||||
print("No frost data available at all. Check if TT_TU column contains valid temperature data.")
|
||||
return
|
||||
print(f"Found {len(hist_pdf)} frost day categories across all years")
|
||||
|
||||
plt.figure(figsize=(8, 5))
|
||||
plt.bar(hist_pdf.frost_days, hist_pdf.station_count, color='steelblue')
|
||||
plt.xlabel('Number of Frost Days in year ' + str(year))
|
||||
plt.ylabel('Number of Stations')
|
||||
plt.title(f'Stations vs Frost Days ({year})')
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
for name in station_name_matches:
|
||||
q_find = f"SELECT stationId, station_name FROM german_stations WHERE lower(station_name) LIKE '%{name.lower()}%'"
|
||||
ids_df = spark.sql(q_find)
|
||||
ids = ids_df.collect()
|
||||
if not ids:
|
||||
print(f"No stations found matching '{name}'")
|
||||
continue
|
||||
for r in ids:
|
||||
sid = r['stationId']
|
||||
sname = r['station_name']
|
||||
print(f"Analyzing stationId={sid} name={sname}")
|
||||
|
||||
q_ts = (
|
||||
"SELECT year, frost_days, "
|
||||
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) RANGE BETWEEN 4 PRECEDING AND CURRENT ROW) AS avg_5, "
|
||||
"AVG(frost_days) OVER (PARTITION BY stationId ORDER BY CAST(year AS INT) RANGE BETWEEN 19 PRECEDING AND CURRENT ROW) AS avg_20 "
|
||||
f"FROM station_year_frost WHERE stationId = {sid} ORDER BY CAST(year AS INT)"
|
||||
)
|
||||
ts_df = spark.sql(q_ts)
|
||||
|
||||
pdf = ts_df.toPandas()
|
||||
if pdf.empty:
|
||||
print(f"No yearly frost data for station {sid}")
|
||||
continue
|
||||
|
||||
pdf['year'] = pdf['year'].astype(int)
|
||||
plt.figure(figsize=(10, 5))
|
||||
plt.plot(pdf.year, pdf.frost_days, label='Frostdays (year)', marker='o')
|
||||
plt.plot(pdf.year, pdf.avg_5, label='5-year avg', linestyle='--')
|
||||
plt.plot(pdf.year, pdf.avg_20, label='20-year avg', linestyle=':')
|
||||
plt.xlabel('Year')
|
||||
plt.ylabel('Frost Days')
|
||||
plt.title(f'Frost Days over Years for {sname} (station {sid})')
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def height_frost_correlation(spark: SparkSession):
|
||||
compute_daily_and_yearly_frosts(spark)
|
||||
|
||||
q_corr = (
|
||||
"SELECT syf.year AS year, corr(s.hoehe, syf.frost_days) AS height_frost_corr "
|
||||
"FROM station_year_frost syf JOIN german_stations s ON syf.stationId = s.stationId "
|
||||
"GROUP BY syf.year ORDER BY CAST(syf.year AS INT)"
|
||||
)
|
||||
|
||||
corr_df = spark.sql(q_corr)
|
||||
|
||||
corr_pdf = corr_df.toPandas()
|
||||
|
||||
corr_pdf = corr_pdf.dropna(subset=['height_frost_corr'])
|
||||
if corr_pdf.empty:
|
||||
print("No non-NaN correlation values found.")
|
||||
return
|
||||
|
||||
corr_pdf['year'] = corr_pdf['year'].astype(int)
|
||||
plt.figure(figsize=(10, 5))
|
||||
plt.bar(corr_pdf.year, corr_pdf.height_frost_corr, color='orange')
|
||||
plt.xlabel('Year')
|
||||
plt.ylabel('Correlation (height vs frostdays)')
|
||||
plt.title('Yearly correlation: station height vs number of frost days')
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def main(scon, spark):
|
||||
read_parquets(spark)
|
||||
|
||||
plot_all_stations(spark)
|
||||
|
||||
duration_circle_size(spark)
|
||||
|
||||
frost_analysis(spark, year=2024, station_name_matches=('kempten',))
|
||||
|
||||
height_frost_correlation(spark)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(scon, spark)
|
||||
|
||||
22
Aufgabe 10/sparkstart.py
Normal file
22
Aufgabe 10/sparkstart.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Erzeugen einer Spark-Konfiguration
|
||||
"""
|
||||
|
||||
from pyspark import SparkConf, SparkContext
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
# connect to cluster
|
||||
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
conf.set("spark.executor.memory", '32g')
|
||||
conf.set("spark.driver.memory", '8g')
|
||||
conf.set("spark.cores.max", "40")
|
||||
scon = SparkContext(conf=conf)
|
||||
|
||||
|
||||
spark = SparkSession \
|
||||
.builder \
|
||||
.appName("Python Spark SQL") \
|
||||
.getOrCreate()
|
||||
366
Aufgabe 11/Aufgabe11.py
Normal file
366
Aufgabe 11/Aufgabe11.py
Normal file
@@ -0,0 +1,366 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from sparkstart import scon, spark
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
|
||||
def read_parquet_tables(spark: SparkSession) -> None:
|
||||
"""Load station master data and hourly measurements from parquet if needed."""
|
||||
stations_path = HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||
products_path = HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||
|
||||
stations_df = spark.read.parquet(stations_path)
|
||||
stations_df.createOrReplaceTempView("german_stations")
|
||||
stations_df.cache()
|
||||
|
||||
products_df = spark.read.parquet(products_path)
|
||||
products_df.createOrReplaceTempView("german_stations_data")
|
||||
products_df.cache()
|
||||
|
||||
|
||||
def _escape_like(value: str) -> str:
|
||||
"""Escape single quotes for safe SQL literal usage."""
|
||||
return value.replace("'", "''")
|
||||
|
||||
|
||||
def resolve_station_id(spark: SparkSession, station_identifier) -> int:
|
||||
"""Resolve station id either from int input or fuzzy name search."""
|
||||
if isinstance(station_identifier, int):
|
||||
return station_identifier
|
||||
if isinstance(station_identifier, str) and station_identifier.strip().isdigit():
|
||||
return int(station_identifier.strip())
|
||||
if isinstance(station_identifier, str):
|
||||
needle = _escape_like(station_identifier.lower())
|
||||
q = (
|
||||
"SELECT stationId FROM german_stations "
|
||||
f"WHERE lower(station_name) LIKE '%{needle}%' ORDER BY station_name LIMIT 1"
|
||||
)
|
||||
result = spark.sql(q).collect()
|
||||
if not result:
|
||||
raise ValueError(f"No station found for pattern '{station_identifier}'")
|
||||
return int(result[0]["stationId"])
|
||||
raise ValueError("station_identifier must be int or str")
|
||||
|
||||
|
||||
def build_station_rollup_for_station(spark: SparkSession, station_identifier) -> None:
|
||||
"""Create rollup view with min/max/avg per hour/day/month/quarter/year."""
|
||||
station_id = resolve_station_id(spark, station_identifier)
|
||||
q = f"""
|
||||
WITH base AS (
|
||||
SELECT
|
||||
d.stationId,
|
||||
gs.station_name,
|
||||
TO_TIMESTAMP(CONCAT(d.date, LPAD(CAST(d.hour AS STRING), 2, '0')), 'yyyyMMddHH') AS hour_ts,
|
||||
TO_DATE(d.date, 'yyyyMMdd') AS day_date,
|
||||
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_in_year,
|
||||
QUARTER(TO_DATE(d.date, 'yyyyMMdd')) AS quarter_in_year,
|
||||
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
|
||||
d.TT_TU AS temperature
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations gs ON d.stationId = gs.stationId
|
||||
WHERE d.stationId = {station_id}
|
||||
AND d.TT_TU IS NOT NULL
|
||||
AND d.TT_TU <> -999
|
||||
),
|
||||
rollup_base AS (
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
hour_ts,
|
||||
day_date,
|
||||
month_in_year,
|
||||
quarter_in_year,
|
||||
year_value,
|
||||
MIN(temperature) AS min_temp,
|
||||
MAX(temperature) AS max_temp,
|
||||
AVG(temperature) AS avg_temp
|
||||
FROM base
|
||||
GROUP BY stationId, station_name, ROLLUP(year_value, quarter_in_year, month_in_year, day_date, hour_ts)
|
||||
)
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
hour_ts,
|
||||
day_date,
|
||||
month_in_year,
|
||||
quarter_in_year,
|
||||
year_value,
|
||||
CASE WHEN month_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(month_in_year AS STRING), 2, '0'), '-01')) END AS month_start_date,
|
||||
CASE WHEN quarter_in_year IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-', LPAD(CAST(quarter_in_year * 3 - 2 AS STRING), 2, '0'), '-01')) END AS quarter_start_date,
|
||||
CASE WHEN year_value IS NOT NULL THEN TO_DATE(CONCAT(CAST(year_value AS STRING), '-01-01')) END AS year_start_date,
|
||||
min_temp,
|
||||
max_temp,
|
||||
avg_temp
|
||||
FROM rollup_base
|
||||
"""
|
||||
rollup_df = spark.sql(q)
|
||||
rollup_df.cache()
|
||||
rollup_df.createOrReplaceTempView("station_rollup")
|
||||
|
||||
|
||||
def _year_window(spark: SparkSession, years_back: int, station_id: int) -> tuple[int, int] | None:
|
||||
stats = spark.sql(
|
||||
f"SELECT MIN(year_value) AS min_year, MAX(year_value) AS max_year FROM station_rollup WHERE year_value IS NOT NULL AND stationId = {station_id}"
|
||||
).collect()
|
||||
if not stats or stats[0]["max_year"] is None:
|
||||
return None
|
||||
min_year = int(stats[0]["min_year"])
|
||||
max_year = int(stats[0]["max_year"])
|
||||
start_year = max(min_year, max_year - years_back + 1)
|
||||
return start_year, max_year
|
||||
|
||||
|
||||
def plot_station_rollup_levels(
|
||||
spark: SparkSession,
|
||||
station_identifier,
|
||||
day_span_years: int = 3,
|
||||
agg_span_years: int = 15,
|
||||
) -> None:
|
||||
"""Plot day, month, quarter, and year aggregates for the given station."""
|
||||
station_id = resolve_station_id(spark, station_identifier)
|
||||
needs_refresh = not spark.catalog.tableExists("station_rollup")
|
||||
if not needs_refresh:
|
||||
count = spark.sql(
|
||||
f"SELECT COUNT(*) AS cnt FROM station_rollup WHERE stationId = {station_id}"
|
||||
).collect()[0]["cnt"]
|
||||
needs_refresh = count == 0
|
||||
if needs_refresh:
|
||||
build_station_rollup_for_station(spark, station_id)
|
||||
|
||||
day_window = _year_window(spark, day_span_years, station_id)
|
||||
if day_window is None:
|
||||
print("No data available for plotting")
|
||||
return
|
||||
month_window = _year_window(spark, agg_span_years, station_id)
|
||||
if month_window is None:
|
||||
print("No aggregated window available")
|
||||
return
|
||||
|
||||
def _plot(query: str, figure_idx: int, title: str, x_col: str = "bucket_date") -> None:
|
||||
pdf = spark.sql(query).toPandas()
|
||||
if pdf.empty:
|
||||
print(f"No data for {title}")
|
||||
return
|
||||
plt.figure(num=figure_idx)
|
||||
plt.clf()
|
||||
metrics = [
|
||||
("min_temp", "Min", "#1f77b4"),
|
||||
("avg_temp", "Avg", "#ff7f0e"),
|
||||
("max_temp", "Max", "#2ca02c"),
|
||||
]
|
||||
for col, label, color in metrics:
|
||||
if col in pdf:
|
||||
plt.plot(pdf[x_col], pdf[col], label=label, color=color)
|
||||
plt.title(title)
|
||||
plt.xlabel("Datum")
|
||||
plt.ylabel("Temperatur (°C)")
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
day_start, day_end = day_window
|
||||
q_day = f"""
|
||||
SELECT day_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND hour_ts IS NULL
|
||||
AND day_date IS NOT NULL
|
||||
AND year_value BETWEEN {day_start} AND {day_end}
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_day, 1, f"Tagesmittelwerte {day_start}-{day_end}")
|
||||
|
||||
agg_start, agg_end = month_window
|
||||
q_month = f"""
|
||||
SELECT month_start_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND day_date IS NULL
|
||||
AND month_in_year IS NOT NULL
|
||||
AND year_value BETWEEN {agg_start} AND {agg_end}
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_month, 2, f"Monatsmittelwerte {agg_start}-{agg_end}")
|
||||
|
||||
q_quarter = f"""
|
||||
SELECT quarter_start_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND month_in_year IS NULL
|
||||
AND quarter_in_year IS NOT NULL
|
||||
AND year_value BETWEEN {agg_start} AND {agg_end}
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_quarter, 3, f"Quartalsmittelwerte {agg_start}-{agg_end}")
|
||||
|
||||
q_year = f"""
|
||||
SELECT year_start_date AS bucket_date, min_temp, avg_temp, max_temp
|
||||
FROM station_rollup
|
||||
WHERE stationId = {station_id}
|
||||
AND quarter_in_year IS NULL
|
||||
AND year_value IS NOT NULL
|
||||
ORDER BY bucket_date
|
||||
"""
|
||||
_plot(q_year, 4, "Jahresmittelwerte")
|
||||
|
||||
|
||||
def create_tempmonat(spark: SparkSession) -> None:
|
||||
"""Create cached temp table tempmonat with monthly aggregates per station."""
|
||||
q = """
|
||||
SELECT
|
||||
d.stationId,
|
||||
gs.station_name,
|
||||
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
|
||||
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
|
||||
MIN(d.TT_TU) AS min_temp,
|
||||
MAX(d.TT_TU) AS max_temp,
|
||||
AVG(d.TT_TU) AS avg_temp
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations gs ON d.stationId = gs.stationId
|
||||
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
|
||||
GROUP BY d.stationId, gs.station_name, YEAR(TO_DATE(d.date, 'yyyyMMdd')), MONTH(TO_DATE(d.date, 'yyyyMMdd'))
|
||||
"""
|
||||
monthly_df = spark.sql(q)
|
||||
monthly_df.cache()
|
||||
monthly_df.createOrReplaceTempView("tempmonat")
|
||||
|
||||
|
||||
def rank_coldest_per_month_2015(spark: SparkSession):
|
||||
"""Rank stations by coldest values per month for 2015 using tempmonat."""
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
year_value,
|
||||
month_value,
|
||||
min_temp,
|
||||
max_temp,
|
||||
avg_temp,
|
||||
RANK() OVER (PARTITION BY month_value ORDER BY min_temp ASC) AS rank_min,
|
||||
RANK() OVER (PARTITION BY month_value ORDER BY max_temp ASC) AS rank_max,
|
||||
RANK() OVER (PARTITION BY month_value ORDER BY avg_temp ASC) AS rank_avg
|
||||
FROM tempmonat
|
||||
WHERE year_value = 2015
|
||||
ORDER BY rank_min, month_value
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def rank_coldest_overall(spark: SparkSession):
|
||||
"""Rank stations by coldest values over all months/years (no partition)."""
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT
|
||||
stationId,
|
||||
station_name,
|
||||
year_value,
|
||||
month_value,
|
||||
min_temp,
|
||||
max_temp,
|
||||
avg_temp,
|
||||
RANK() OVER (ORDER BY min_temp ASC) AS rank_min,
|
||||
RANK() OVER (ORDER BY max_temp ASC) AS rank_max,
|
||||
RANK() OVER (ORDER BY avg_temp ASC) AS rank_avg
|
||||
FROM tempmonat
|
||||
ORDER BY rank_min
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def create_grouping_sets_overview(spark: SparkSession) -> None:
|
||||
"""Compute grouping sets for requested aggregations and cache the result."""
|
||||
q = """
|
||||
WITH base AS (
|
||||
SELECT
|
||||
YEAR(TO_DATE(d.date, 'yyyyMMdd')) AS year_value,
|
||||
MONTH(TO_DATE(d.date, 'yyyyMMdd')) AS month_value,
|
||||
gs.bundesland,
|
||||
gs.stationId,
|
||||
gs.station_name,
|
||||
d.TT_TU AS temperature
|
||||
FROM german_stations_data d
|
||||
JOIN german_stations gs ON d.stationId = gs.stationId
|
||||
WHERE d.TT_TU IS NOT NULL AND d.TT_TU <> -999
|
||||
)
|
||||
SELECT
|
||||
year_value,
|
||||
month_value,
|
||||
bundesland,
|
||||
stationId,
|
||||
station_name,
|
||||
MIN(temperature) AS min_temp,
|
||||
MAX(temperature) AS max_temp,
|
||||
AVG(temperature) AS avg_temp
|
||||
FROM base
|
||||
GROUP BY GROUPING SETS (
|
||||
(year_value, bundesland),
|
||||
(year_value, stationId, station_name, bundesland),
|
||||
(month_value, bundesland)
|
||||
)
|
||||
"""
|
||||
grouped_df = spark.sql(q)
|
||||
grouped_df.cache()
|
||||
grouped_df.createOrReplaceTempView("grouping_sets_stats")
|
||||
|
||||
|
||||
def select_year_bundesland(spark: SparkSession):
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT year_value, bundesland, min_temp, max_temp, avg_temp
|
||||
FROM grouping_sets_stats
|
||||
WHERE bundesland IS NOT NULL AND month_value IS NULL AND stationId IS NULL
|
||||
ORDER BY year_value, bundesland
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def select_year_station(spark: SparkSession):
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT year_value, stationId, station_name, min_temp, max_temp, avg_temp
|
||||
FROM grouping_sets_stats
|
||||
WHERE stationId IS NOT NULL AND month_value IS NULL
|
||||
ORDER BY year_value, stationId
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def select_month_bundesland(spark: SparkSession):
|
||||
return spark.sql(
|
||||
"""
|
||||
SELECT month_value, bundesland, min_temp, max_temp, avg_temp
|
||||
FROM grouping_sets_stats
|
||||
WHERE month_value IS NOT NULL AND year_value IS NULL
|
||||
ORDER BY month_value, bundesland
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def main(scon, spark):
|
||||
read_parquet_tables(spark)
|
||||
build_station_rollup_for_station(spark, "kempten")
|
||||
plot_station_rollup_levels(spark, "kempten")
|
||||
|
||||
create_tempmonat(spark)
|
||||
print("Rangfolgen 2015 je Monat:")
|
||||
rank_coldest_per_month_2015(spark).show(36, truncate=False)
|
||||
print("Rangfolgen gesamt:")
|
||||
rank_coldest_overall(spark).show(36, truncate=False)
|
||||
|
||||
create_grouping_sets_overview(spark)
|
||||
print("Jahr vs Bundesland:")
|
||||
select_year_bundesland(spark).show(20, truncate=False)
|
||||
print("Jahr vs Station:")
|
||||
select_year_station(spark).show(20, truncate=False)
|
||||
print("Monat vs Bundesland:")
|
||||
select_month_bundesland(spark).show(20, truncate=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
22
Aufgabe 11/sparkstart.py
Normal file
22
Aufgabe 11/sparkstart.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Erzeugen einer Spark-Konfiguration
|
||||
"""
|
||||
|
||||
from pyspark import SparkConf, SparkContext
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
# connect to cluster
|
||||
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
conf.set("spark.executor.memory", '32g')
|
||||
conf.set("spark.driver.memory", '8g')
|
||||
conf.set("spark.cores.max", "40")
|
||||
scon = SparkContext(conf=conf)
|
||||
|
||||
|
||||
spark = SparkSession \
|
||||
.builder \
|
||||
.appName("Python Spark SQL") \
|
||||
.getOrCreate()
|
||||
276
Aufgabe 12/Aufgabe12.py
Normal file
276
Aufgabe 12/Aufgabe12.py
Normal file
@@ -0,0 +1,276 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Iterable, Sequence
|
||||
|
||||
from pyspark.sql import SparkSession, functions as F, types as T
|
||||
|
||||
from sparkstart import scon, spark
|
||||
|
||||
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
|
||||
|
||||
_DATE_FALLBACK_EXPR = "COALESCE(date_value, TO_DATE(date_str), TO_DATE(date_str, 'yyyyMMdd'))"
|
||||
|
||||
|
||||
def _resolve_column_name(columns: Sequence[str], candidates: Iterable[str]) -> str:
|
||||
|
||||
lowered = {col.lower(): col for col in columns}
|
||||
for candidate in candidates:
|
||||
match = lowered.get(candidate.lower())
|
||||
if match:
|
||||
return match
|
||||
raise ValueError(f"None of the candidate columns {list(candidates)} exist in {columns}")
|
||||
|
||||
|
||||
def _normalize_stocks_view(spark: SparkSession) -> None:
|
||||
|
||||
stocks_path = HDFSPATH + "stocks/stocks.parquet"
|
||||
stocks_df = spark.read.parquet(stocks_path)
|
||||
|
||||
symbol_col = _resolve_column_name(stocks_df.columns, ("symbol", "ticker"))
|
||||
date_col = _resolve_column_name(stocks_df.columns, ("date", "pricedate", "dt"))
|
||||
close_col = _resolve_column_name(stocks_df.columns, ("close", "closeprice", "closingprice"))
|
||||
|
||||
stocks_df = (
|
||||
stocks_df
|
||||
.select(
|
||||
F.col(symbol_col).alias("symbol"),
|
||||
F.col(date_col).alias("raw_date"),
|
||||
F.col(close_col).alias("close_raw"),
|
||||
)
|
||||
.withColumn("date_str", F.col("raw_date").cast("string"))
|
||||
)
|
||||
|
||||
date_candidates = [
|
||||
F.col("raw_date").cast("date"),
|
||||
F.to_date("raw_date"),
|
||||
F.to_date("date_str"),
|
||||
F.to_date("date_str", "yyyyMMdd"),
|
||||
F.to_date("date_str", "MM/dd/yyyy"),
|
||||
]
|
||||
|
||||
stocks_df = (
|
||||
stocks_df
|
||||
.withColumn("date_value", F.coalesce(*date_candidates))
|
||||
.withColumn("year_value", F.substring("date_str", 1, 4).cast("int"))
|
||||
.withColumn("close_value", F.col("close_raw").cast("double"))
|
||||
.select("symbol", "date_value", "date_str", "year_value", "close_value")
|
||||
)
|
||||
|
||||
stocks_df.cache()
|
||||
stocks_df.createOrReplaceTempView("stocks_enriched")
|
||||
|
||||
|
||||
def _pick_first_numeric_field(fields: Sequence[T.StructField]) -> str:
|
||||
|
||||
numeric_types = (
|
||||
T.ByteType,
|
||||
T.ShortType,
|
||||
T.IntegerType,
|
||||
T.LongType,
|
||||
T.FloatType,
|
||||
T.DoubleType,
|
||||
T.DecimalType,
|
||||
)
|
||||
for field in fields:
|
||||
if isinstance(field.dataType, numeric_types):
|
||||
return field.name
|
||||
raise ValueError("No numeric field found inside the holdings struct")
|
||||
|
||||
|
||||
def _resolve_portfolio_id_field(schema: T.StructType) -> str:
|
||||
|
||||
priority = ("portfolio_id", "portfolioid", "id")
|
||||
lowered = {field.name.lower(): field.name for field in schema.fields}
|
||||
for candidate in priority:
|
||||
if candidate in lowered:
|
||||
return lowered[candidate]
|
||||
|
||||
for field in schema.fields:
|
||||
if not isinstance(field.dataType, (T.ArrayType, T.MapType)):
|
||||
return field.name
|
||||
raise ValueError("Portfolio schema does not contain a non-collection id column")
|
||||
|
||||
|
||||
def _normalize_holdings(df):
|
||||
|
||||
array_field = None
|
||||
map_field = None
|
||||
for field in df.schema.fields:
|
||||
if isinstance(field.dataType, T.ArrayType) and isinstance(field.dataType.elementType, T.StructType):
|
||||
array_field = field
|
||||
break
|
||||
if isinstance(field.dataType, T.MapType) and isinstance(field.dataType.keyType, T.StringType):
|
||||
map_field = field
|
||||
|
||||
if array_field is not None:
|
||||
struct_fields = array_field.dataType.elementType.fields
|
||||
symbol_field = _resolve_column_name([f.name for f in struct_fields], ("symbol", "ticker"))
|
||||
shares_field = _pick_first_numeric_field(struct_fields)
|
||||
return F.expr(
|
||||
f"transform(`{array_field.name}`, x -> named_struct('symbol', x.`{symbol_field}`, 'shares', CAST(x.`{shares_field}` AS DOUBLE)))"
|
||||
)
|
||||
|
||||
if map_field is not None and isinstance(map_field.dataType.valueType, (T.IntegerType, T.LongType, T.FloatType, T.DoubleType, T.DecimalType)):
|
||||
return F.expr(
|
||||
f"transform(map_entries(`{map_field.name}`), x -> named_struct('symbol', x.key, 'shares', CAST(x.value AS DOUBLE)))"
|
||||
)
|
||||
|
||||
raise ValueError("Could not locate holdings column (array<struct> or map) in portfolio data")
|
||||
|
||||
|
||||
def _normalize_portfolio_view(spark: SparkSession) -> None:
|
||||
|
||||
portfolio_path = HDFSPATH + "stocks/portfolio.parquet"
|
||||
portfolio_df = spark.read.parquet(portfolio_path)
|
||||
|
||||
id_col = _resolve_portfolio_id_field(portfolio_df.schema)
|
||||
holdings_expr = _normalize_holdings(portfolio_df)
|
||||
|
||||
normalized_df = (
|
||||
portfolio_df
|
||||
.select(
|
||||
F.col(id_col).alias("portfolio_id"),
|
||||
holdings_expr.alias("holdings"),
|
||||
)
|
||||
)
|
||||
|
||||
normalized_df.cache()
|
||||
normalized_df.createOrReplaceTempView("portfolio")
|
||||
|
||||
spark.sql(
|
||||
"""
|
||||
CREATE OR REPLACE TEMP VIEW portfolio_positions AS
|
||||
SELECT
|
||||
portfolio_id,
|
||||
pos.symbol AS symbol,
|
||||
pos.shares AS shares
|
||||
FROM portfolio
|
||||
LATERAL VIEW explode(holdings) exploded AS pos
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def register_base_views(spark: SparkSession) -> None:
|
||||
|
||||
_normalize_stocks_view(spark)
|
||||
_normalize_portfolio_view(spark)
|
||||
|
||||
|
||||
def query_first_and_last_listing(spark: SparkSession):
|
||||
|
||||
q = f"""
|
||||
SELECT
|
||||
symbol,
|
||||
MIN({_DATE_FALLBACK_EXPR}) AS first_listing,
|
||||
MAX({_DATE_FALLBACK_EXPR}) AS last_listing
|
||||
FROM stocks_enriched
|
||||
WHERE symbol IS NOT NULL
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_close_stats_2009(spark: SparkSession):
|
||||
|
||||
q = """
|
||||
SELECT
|
||||
symbol,
|
||||
MAX(close_value) AS max_close,
|
||||
MIN(close_value) AS min_close,
|
||||
AVG(close_value) AS avg_close
|
||||
FROM stocks_enriched
|
||||
WHERE year_value = 2009 AND close_value IS NOT NULL AND symbol IS NOT NULL
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_portfolio_symbol_stats(spark: SparkSession):
|
||||
|
||||
q = """
|
||||
SELECT
|
||||
symbol,
|
||||
SUM(shares) AS total_shares,
|
||||
COUNT(DISTINCT portfolio_id) AS portfolio_count,
|
||||
AVG(shares) AS avg_shares_per_portfolio
|
||||
FROM portfolio_positions
|
||||
WHERE symbol IS NOT NULL
|
||||
GROUP BY symbol
|
||||
ORDER BY symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_symbols_missing_in_portfolios(spark: SparkSession):
|
||||
|
||||
q = """
|
||||
SELECT DISTINCT s.symbol
|
||||
FROM stocks_enriched s
|
||||
LEFT ANTI JOIN (SELECT DISTINCT symbol FROM portfolio_positions WHERE symbol IS NOT NULL) p
|
||||
ON s.symbol = p.symbol
|
||||
WHERE s.symbol IS NOT NULL
|
||||
ORDER BY s.symbol
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def query_portfolio_values_2010(spark: SparkSession):
|
||||
|
||||
q = f"""
|
||||
WITH quotes_2010 AS (
|
||||
SELECT
|
||||
symbol,
|
||||
close_value,
|
||||
ROW_NUMBER() OVER (
|
||||
PARTITION BY symbol
|
||||
ORDER BY {_DATE_FALLBACK_EXPR} DESC, date_str DESC
|
||||
) AS rn
|
||||
FROM stocks_enriched
|
||||
WHERE year_value = 2010 AND symbol IS NOT NULL AND close_value IS NOT NULL
|
||||
),
|
||||
last_quotes AS (
|
||||
SELECT symbol, close_value
|
||||
FROM quotes_2010
|
||||
WHERE rn = 1
|
||||
),
|
||||
portfolio_values AS (
|
||||
SELECT
|
||||
pp.portfolio_id,
|
||||
SUM(pp.shares * lq.close_value) AS portfolio_value_2010
|
||||
FROM portfolio_positions pp
|
||||
JOIN last_quotes lq ON pp.symbol = lq.symbol
|
||||
GROUP BY pp.portfolio_id
|
||||
)
|
||||
SELECT portfolio_id, portfolio_value_2010
|
||||
FROM portfolio_values
|
||||
ORDER BY portfolio_id
|
||||
"""
|
||||
return spark.sql(q)
|
||||
|
||||
|
||||
def main(scon, spark):
|
||||
|
||||
register_base_views(spark)
|
||||
|
||||
print("(a) Erste und letzte Notierung je Symbol:")
|
||||
query_first_and_last_listing(spark).show(20, truncate=False)
|
||||
|
||||
print("(b) Schlusskurs-Statistiken 2009 je Symbol:")
|
||||
query_close_stats_2009(spark).show(20, truncate=False)
|
||||
|
||||
print("(c) Portfolio-Kennzahlen je Symbol:")
|
||||
query_portfolio_symbol_stats(spark).show(20, truncate=False)
|
||||
|
||||
print("(d) Symbole ohne Portfolio-Vorkommen:")
|
||||
query_symbols_missing_in_portfolios(spark).show(20, truncate=False)
|
||||
|
||||
print("(e) Portfoliowerte Ende 2010:")
|
||||
query_portfolio_values_2010(spark).show(20, truncate=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
22
Aufgabe 12/sparkstart.py
Normal file
22
Aufgabe 12/sparkstart.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Erzeugen einer Spark-Konfiguration
|
||||
"""
|
||||
|
||||
from pyspark import SparkConf, SparkContext
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
# connect to cluster
|
||||
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
conf.set("spark.executor.memory", '32g')
|
||||
conf.set("spark.driver.memory", '8g')
|
||||
conf.set("spark.cores.max", "40")
|
||||
scon = SparkContext(conf=conf)
|
||||
|
||||
|
||||
spark = SparkSession \
|
||||
.builder \
|
||||
.appName("Python Spark SQL") \
|
||||
.getOrCreate()
|
||||
@@ -133,7 +133,7 @@ def plot_avg_tmax_day(station_name):
|
||||
|
||||
days = [row['day'] for row in df_avg]
|
||||
avg_tmax = [row['avg_tmax'] for row in df_avg]
|
||||
|
||||
#TODO: Mit SQL machen
|
||||
# 21-Tage gleitender Durchschnitt (10 Tage davor, Tag selbst, 10 Tage danach)
|
||||
rolling_avg = []
|
||||
for i in range(len(avg_tmax)):
|
||||
|
||||
166
Aufgabe 9/Aufgabe9.py
Normal file
166
Aufgabe 9/Aufgabe9.py
Normal file
@@ -0,0 +1,166 @@
|
||||
from sparkstart import scon, spark
|
||||
from pyspark import SparkContext, rdd
|
||||
from pyspark.sql import SparkSession
|
||||
from pyspark.sql.types import StructType
|
||||
from pyspark.sql.types import StructField
|
||||
from pyspark.sql.types import StringType
|
||||
from pyspark.sql.types import FloatType
|
||||
from pyspark.sql.types import IntegerType
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
||||
GHCNDPATH = HDFSPATH + "ghcnd/"
|
||||
GHCNDHOMEPATH = "/data/ghcnd/"
|
||||
|
||||
|
||||
# Aufgabe 9 a
|
||||
|
||||
def import_data(spark: SparkSession, scon: SparkContext):
|
||||
"""
|
||||
%time import_data(spark, scon)
|
||||
"""
|
||||
|
||||
# Daten in RDD einlesen
|
||||
rdd_station = scon.textFile("/data/cdc/hourly/TU_Stundenwerte_Beschreibung_Stationen.txt")
|
||||
|
||||
# Entfernen der ersten beiden Zeilen (Header und Trennzeile)
|
||||
rdd_station_filterd = (rdd_station
|
||||
.zipWithIndex() # jede Zeile bekommt idx
|
||||
.filter(lambda x: x[1] >= 2) # nur Zeilen mit idx >= 2 behalten
|
||||
.map(lambda x: x[0])) # idx wieder entfernen
|
||||
|
||||
|
||||
rdd_station_splitlines = rdd_station_filterd.map(
|
||||
lambda l: (
|
||||
int(l[:6].strip()), # Station ID
|
||||
l[6:15], # von_datum
|
||||
l[15:24], # bis_datum
|
||||
float(l[24:40].strip()), # stations höhe
|
||||
float(l[40:53].strip()), # geoBreite
|
||||
float(l[53:61].strip()), # geoHöhe
|
||||
l[61:142], # Stationsname
|
||||
l[142:-1] # Bundesland
|
||||
))
|
||||
|
||||
# Datenschema festlegen
|
||||
stationschema = StructType(
|
||||
[
|
||||
StructField("stationId", IntegerType(), True),
|
||||
StructField("von_datum", StringType(), True),
|
||||
StructField("bis_datum", StringType(), True),
|
||||
StructField("hoehe", FloatType(), True),
|
||||
StructField("geo_breite", FloatType(), True),
|
||||
StructField("geo_laenge", FloatType(), True),
|
||||
StructField("station_name", StringType(), True),
|
||||
StructField("bundesland", StringType(), True)
|
||||
]
|
||||
)
|
||||
|
||||
# Data Frame erzeugen
|
||||
stationframe = spark.createDataFrame(rdd_station_splitlines, schema=stationschema)
|
||||
stationframe.printSchema()
|
||||
|
||||
# Temporäre View erzeugen
|
||||
stationframe.createOrReplaceTempView("german_stations")
|
||||
|
||||
# Data Frame in HDFS speichern
|
||||
stationframe.write.mode("overwrite").parquet(
|
||||
HDFSPATH + "home/heiserervalentin/german_stations.parquet"
|
||||
)
|
||||
|
||||
|
||||
|
||||
def read_data_from_parquet(spark):
|
||||
"""
|
||||
read_data_from_parquet(spark)
|
||||
"""
|
||||
df = spark.read.parquet(HDFSPATH + "home/heiserervalentin/german_stations.parquet")
|
||||
df.createOrReplaceTempView("german_stations")
|
||||
df.cache()
|
||||
|
||||
def sql_querys(spark):
|
||||
"""
|
||||
sql_querys(spark)
|
||||
"""
|
||||
spark.sql("SELECT * FROM german_stations").show(5, truncate=False)
|
||||
spark.sql("SELECT COUNT(*) AS Anzahl FROM german_stations").show()
|
||||
spark.sql("SELECT MAX(geo_breite) FROM german_stations").show()
|
||||
df = spark.sql("SELECT * FROM german_stations").toPandas()
|
||||
|
||||
plt.figure(figsize=[6,6])
|
||||
plt.scatter(df.geo_laenge, df.geo_breite, marker='.', color = 'r')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def import_produkt_files(spark: SparkSession, scon: SparkContext, path='/data/cdc/hourly/'):
|
||||
"""
|
||||
import_produkt_files(spark, scon)
|
||||
"""
|
||||
|
||||
# Daten in RDD einlesen
|
||||
rdd_produkt = scon.textFile(f"{path}/produkt*")
|
||||
|
||||
# Kopfzeile und Leerzeichen filtern
|
||||
rdd_filterd = rdd_produkt \
|
||||
.filter(lambda l: l != 'STATIONS_ID;MESS_DATUM;QN_9;TT_TU;RF_TU;eor') \
|
||||
.map(lambda l: [x.strip() for x in l.split(';')])
|
||||
|
||||
# Zeilen in Felder aufteilen
|
||||
rdd_produkt_splitlines = rdd_filterd.map(
|
||||
lambda l: (
|
||||
int(l[0]), # Stat_id
|
||||
l[1][:8], # Messdatum
|
||||
int(l[1][8:10]), # Messstunde
|
||||
int(l[2]), # Qualitätsniveau
|
||||
float(l[3]), # Lufttemp.
|
||||
float(l[4]), # rel. Luftfeuchte
|
||||
int(l[1][0:4]) # jahr
|
||||
)
|
||||
)
|
||||
|
||||
print(rdd_produkt_splitlines.take(5))
|
||||
|
||||
# Datenschema definieren
|
||||
product_schema = StructType(
|
||||
[
|
||||
StructField("stationId", IntegerType(), True),
|
||||
StructField("date", StringType(), True),
|
||||
StructField("hour", IntegerType(), True),
|
||||
StructField("QN_9", IntegerType(), True),
|
||||
StructField("TT_TU", FloatType(), True),
|
||||
StructField("RF_TU", FloatType(), True),
|
||||
StructField("jahr", IntegerType(), True)
|
||||
]
|
||||
)
|
||||
|
||||
product_frame = spark.createDataFrame(rdd_produkt_splitlines, schema=product_schema)
|
||||
product_frame.printSchema()
|
||||
product_frame.createOrReplaceTempView("german_stations_data")
|
||||
|
||||
|
||||
product_frame.write.mode("overwrite").parquet(
|
||||
HDFSPATH + "home/heiserervalentin/german_stations_data.parquet"
|
||||
)
|
||||
|
||||
|
||||
def read_product_data_from_parquet(spark):
|
||||
"""
|
||||
read_product_data_from_parquet(spark)
|
||||
"""
|
||||
df = spark.read.parquet(HDFSPATH + "home/heiserervalentin/german_stations_data.parquet")
|
||||
df.createOrReplaceTempView("german_stations_data")
|
||||
df.cache()
|
||||
|
||||
def main(scon, spark):
|
||||
# Daten importieren
|
||||
import_data(spark, scon)
|
||||
read_data_from_parquet(spark)
|
||||
sql_querys(spark)
|
||||
|
||||
import_produkt_files(spark, scon)
|
||||
read_product_data_from_parquet(spark)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(scon, spark)
|
||||
21
Aufgabe 9/sparkstart.py
Normal file
21
Aufgabe 9/sparkstart.py
Normal file
@@ -0,0 +1,21 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Erzeugen einer Spark-Konfiguration
|
||||
"""
|
||||
|
||||
from pyspark import SparkConf, SparkContext
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
# connect to cluster
|
||||
conf = SparkConf().setMaster("spark://193.174.205.250:7077").setAppName("HeisererValentin")
|
||||
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
conf.set("spark.executor.memory", '32g')
|
||||
conf.set("spark.driver.memory", '8g')
|
||||
conf.set("spark.cores.max", "40")
|
||||
scon = SparkContext(conf=conf)
|
||||
|
||||
spark = SparkSession \
|
||||
.builder \
|
||||
.appName("Python Spark SQL") \
|
||||
.getOrCreate()
|
||||
Reference in New Issue
Block a user