mirror of
https://github.com/Vale54321/BigData.git
synced 2025-12-15 11:29:32 +01:00
277 lines
7.1 KiB
Python
277 lines
7.1 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import Iterable, Sequence
|
|
|
|
from pyspark.sql import SparkSession, functions as F, types as T
|
|
|
|
from sparkstart import scon, spark
|
|
|
|
|
|
HDFSPATH = "hdfs://193.174.205.250:54310/"
|
|
|
|
|
|
_DATE_FALLBACK_EXPR = "COALESCE(date_value, TO_DATE(date_str), TO_DATE(date_str, 'yyyyMMdd'))"
|
|
|
|
|
|
def _resolve_column_name(columns: Sequence[str], candidates: Iterable[str]) -> str:
|
|
|
|
lowered = {col.lower(): col for col in columns}
|
|
for candidate in candidates:
|
|
match = lowered.get(candidate.lower())
|
|
if match:
|
|
return match
|
|
raise ValueError(f"None of the candidate columns {list(candidates)} exist in {columns}")
|
|
|
|
|
|
def _normalize_stocks_view(spark: SparkSession) -> None:
|
|
|
|
stocks_path = HDFSPATH + "stocks/stocks.parquet"
|
|
stocks_df = spark.read.parquet(stocks_path)
|
|
|
|
symbol_col = _resolve_column_name(stocks_df.columns, ("symbol", "ticker"))
|
|
date_col = _resolve_column_name(stocks_df.columns, ("date", "pricedate", "dt"))
|
|
close_col = _resolve_column_name(stocks_df.columns, ("close", "closeprice", "closingprice"))
|
|
|
|
stocks_df = (
|
|
stocks_df
|
|
.select(
|
|
F.col(symbol_col).alias("symbol"),
|
|
F.col(date_col).alias("raw_date"),
|
|
F.col(close_col).alias("close_raw"),
|
|
)
|
|
.withColumn("date_str", F.col("raw_date").cast("string"))
|
|
)
|
|
|
|
date_candidates = [
|
|
F.col("raw_date").cast("date"),
|
|
F.to_date("raw_date"),
|
|
F.to_date("date_str"),
|
|
F.to_date("date_str", "yyyyMMdd"),
|
|
F.to_date("date_str", "MM/dd/yyyy"),
|
|
]
|
|
|
|
stocks_df = (
|
|
stocks_df
|
|
.withColumn("date_value", F.coalesce(*date_candidates))
|
|
.withColumn("year_value", F.substring("date_str", 1, 4).cast("int"))
|
|
.withColumn("close_value", F.col("close_raw").cast("double"))
|
|
.select("symbol", "date_value", "date_str", "year_value", "close_value")
|
|
)
|
|
|
|
stocks_df.cache()
|
|
stocks_df.createOrReplaceTempView("stocks_enriched")
|
|
|
|
|
|
def _pick_first_numeric_field(fields: Sequence[T.StructField]) -> str:
|
|
|
|
numeric_types = (
|
|
T.ByteType,
|
|
T.ShortType,
|
|
T.IntegerType,
|
|
T.LongType,
|
|
T.FloatType,
|
|
T.DoubleType,
|
|
T.DecimalType,
|
|
)
|
|
for field in fields:
|
|
if isinstance(field.dataType, numeric_types):
|
|
return field.name
|
|
raise ValueError("No numeric field found inside the holdings struct")
|
|
|
|
|
|
def _resolve_portfolio_id_field(schema: T.StructType) -> str:
|
|
|
|
priority = ("portfolio_id", "portfolioid", "id")
|
|
lowered = {field.name.lower(): field.name for field in schema.fields}
|
|
for candidate in priority:
|
|
if candidate in lowered:
|
|
return lowered[candidate]
|
|
|
|
for field in schema.fields:
|
|
if not isinstance(field.dataType, (T.ArrayType, T.MapType)):
|
|
return field.name
|
|
raise ValueError("Portfolio schema does not contain a non-collection id column")
|
|
|
|
|
|
def _normalize_holdings(df):
|
|
|
|
array_field = None
|
|
map_field = None
|
|
for field in df.schema.fields:
|
|
if isinstance(field.dataType, T.ArrayType) and isinstance(field.dataType.elementType, T.StructType):
|
|
array_field = field
|
|
break
|
|
if isinstance(field.dataType, T.MapType) and isinstance(field.dataType.keyType, T.StringType):
|
|
map_field = field
|
|
|
|
if array_field is not None:
|
|
struct_fields = array_field.dataType.elementType.fields
|
|
symbol_field = _resolve_column_name([f.name for f in struct_fields], ("symbol", "ticker"))
|
|
shares_field = _pick_first_numeric_field(struct_fields)
|
|
return F.expr(
|
|
f"transform(`{array_field.name}`, x -> named_struct('symbol', x.`{symbol_field}`, 'shares', CAST(x.`{shares_field}` AS DOUBLE)))"
|
|
)
|
|
|
|
if map_field is not None and isinstance(map_field.dataType.valueType, (T.IntegerType, T.LongType, T.FloatType, T.DoubleType, T.DecimalType)):
|
|
return F.expr(
|
|
f"transform(map_entries(`{map_field.name}`), x -> named_struct('symbol', x.key, 'shares', CAST(x.value AS DOUBLE)))"
|
|
)
|
|
|
|
raise ValueError("Could not locate holdings column (array<struct> or map) in portfolio data")
|
|
|
|
|
|
def _normalize_portfolio_view(spark: SparkSession) -> None:
|
|
|
|
portfolio_path = HDFSPATH + "stocks/portfolio.parquet"
|
|
portfolio_df = spark.read.parquet(portfolio_path)
|
|
|
|
id_col = _resolve_portfolio_id_field(portfolio_df.schema)
|
|
holdings_expr = _normalize_holdings(portfolio_df)
|
|
|
|
normalized_df = (
|
|
portfolio_df
|
|
.select(
|
|
F.col(id_col).alias("portfolio_id"),
|
|
holdings_expr.alias("holdings"),
|
|
)
|
|
)
|
|
|
|
normalized_df.cache()
|
|
normalized_df.createOrReplaceTempView("portfolio")
|
|
|
|
spark.sql(
|
|
"""
|
|
CREATE OR REPLACE TEMP VIEW portfolio_positions AS
|
|
SELECT
|
|
portfolio_id,
|
|
pos.symbol AS symbol,
|
|
pos.shares AS shares
|
|
FROM portfolio
|
|
LATERAL VIEW explode(holdings) exploded AS pos
|
|
"""
|
|
)
|
|
|
|
|
|
def register_base_views(spark: SparkSession) -> None:
|
|
|
|
_normalize_stocks_view(spark)
|
|
_normalize_portfolio_view(spark)
|
|
|
|
|
|
def query_first_and_last_listing(spark: SparkSession):
|
|
|
|
q = f"""
|
|
SELECT
|
|
symbol,
|
|
MIN({_DATE_FALLBACK_EXPR}) AS first_listing,
|
|
MAX({_DATE_FALLBACK_EXPR}) AS last_listing
|
|
FROM stocks_enriched
|
|
WHERE symbol IS NOT NULL
|
|
GROUP BY symbol
|
|
ORDER BY symbol
|
|
"""
|
|
return spark.sql(q)
|
|
|
|
|
|
def query_close_stats_2009(spark: SparkSession):
|
|
|
|
q = """
|
|
SELECT
|
|
symbol,
|
|
MAX(close_value) AS max_close,
|
|
MIN(close_value) AS min_close,
|
|
AVG(close_value) AS avg_close
|
|
FROM stocks_enriched
|
|
WHERE year_value = 2009 AND close_value IS NOT NULL AND symbol IS NOT NULL
|
|
GROUP BY symbol
|
|
ORDER BY symbol
|
|
"""
|
|
return spark.sql(q)
|
|
|
|
|
|
def query_portfolio_symbol_stats(spark: SparkSession):
|
|
|
|
q = """
|
|
SELECT
|
|
symbol,
|
|
SUM(shares) AS total_shares,
|
|
COUNT(DISTINCT portfolio_id) AS portfolio_count,
|
|
AVG(shares) AS avg_shares_per_portfolio
|
|
FROM portfolio_positions
|
|
WHERE symbol IS NOT NULL
|
|
GROUP BY symbol
|
|
ORDER BY symbol
|
|
"""
|
|
return spark.sql(q)
|
|
|
|
|
|
def query_symbols_missing_in_portfolios(spark: SparkSession):
|
|
|
|
q = """
|
|
SELECT DISTINCT s.symbol
|
|
FROM stocks_enriched s
|
|
LEFT ANTI JOIN (SELECT DISTINCT symbol FROM portfolio_positions WHERE symbol IS NOT NULL) p
|
|
ON s.symbol = p.symbol
|
|
WHERE s.symbol IS NOT NULL
|
|
ORDER BY s.symbol
|
|
"""
|
|
return spark.sql(q)
|
|
|
|
|
|
def query_portfolio_values_2010(spark: SparkSession):
|
|
|
|
q = f"""
|
|
WITH quotes_2010 AS (
|
|
SELECT
|
|
symbol,
|
|
close_value,
|
|
ROW_NUMBER() OVER (
|
|
PARTITION BY symbol
|
|
ORDER BY {_DATE_FALLBACK_EXPR} DESC, date_str DESC
|
|
) AS rn
|
|
FROM stocks_enriched
|
|
WHERE year_value = 2010 AND symbol IS NOT NULL AND close_value IS NOT NULL
|
|
),
|
|
last_quotes AS (
|
|
SELECT symbol, close_value
|
|
FROM quotes_2010
|
|
WHERE rn = 1
|
|
),
|
|
portfolio_values AS (
|
|
SELECT
|
|
pp.portfolio_id,
|
|
SUM(pp.shares * lq.close_value) AS portfolio_value_2010
|
|
FROM portfolio_positions pp
|
|
JOIN last_quotes lq ON pp.symbol = lq.symbol
|
|
GROUP BY pp.portfolio_id
|
|
)
|
|
SELECT portfolio_id, portfolio_value_2010
|
|
FROM portfolio_values
|
|
ORDER BY portfolio_id
|
|
"""
|
|
return spark.sql(q)
|
|
|
|
|
|
def main(scon, spark):
|
|
|
|
register_base_views(spark)
|
|
|
|
print("(a) Erste und letzte Notierung je Symbol:")
|
|
query_first_and_last_listing(spark).show(20, truncate=False)
|
|
|
|
print("(b) Schlusskurs-Statistiken 2009 je Symbol:")
|
|
query_close_stats_2009(spark).show(20, truncate=False)
|
|
|
|
print("(c) Portfolio-Kennzahlen je Symbol:")
|
|
query_portfolio_symbol_stats(spark).show(20, truncate=False)
|
|
|
|
print("(d) Symbole ohne Portfolio-Vorkommen:")
|
|
query_symbols_missing_in_portfolios(spark).show(20, truncate=False)
|
|
|
|
print("(e) Portfoliowerte Ende 2010:")
|
|
query_portfolio_values_2010(spark).show(20, truncate=False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(scon, spark)
|